IDEAS home Printed from
   My bibliography  Save this article

Portfolio choice under cumulative prospect theory: sensitivity analysis and an empirical study


  • Giorgio Consigli

    (University of Bergamo)

  • Asmerilda Hitaj

    () (University of Pavia)

  • Elisa Mastrogiacomo

    (Insubria University)


Abstract A sensitivity analysis of the impact of cumulative prospect theory (CPT) parameters on a Mean/Risk efficient frontier is performed through a simulation procedure, assuming a Multivariate Variance Gamma distribution for log-returns. The optimal investment problem for an agent with CPT preferences is then investigated empirically, by considering different parameters’ combinations for the CPT utility function. Three different portfolios, one hedge fund and two equity portfolios are considered in this study, where the Modified Herfindahl index is used as a measure of portfolio diversification, while the Omega ratio and the Information ratio are used as measures of performance.

Suggested Citation

  • Giorgio Consigli & Asmerilda Hitaj & Elisa Mastrogiacomo, 2019. "Portfolio choice under cumulative prospect theory: sensitivity analysis and an empirical study," Computational Management Science, Springer, vol. 16(1), pages 129-154, February.
  • Handle: RePEc:spr:comgts:v:16:y:2019:i:1:d:10.1007_s10287-018-0333-x
    DOI: 10.1007/s10287-018-0333-x

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Thorsten HENS & János MAYER, 2014. "Cumulative Prospect Theory and Mean Variance Analysis: A Rigorous Comparison," Swiss Finance Institute Research Paper Series 14-23, Swiss Finance Institute.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55.
    5. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
    6. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    7. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    8. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    9. Quiggin, John, 1993. "Testing between Alternative Models of Choice under Uncertainty: Comment," Journal of Risk and Uncertainty, Springer, vol. 6(2), pages 161-164, April.
    10. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    11. Colin F. Camerer & Howard Kunreuther, 1989. "Decision processes for low probability events: Policy implications," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 8(4), pages 565-592.
    12. Hitaj, Asmerilda & Zambruno, Giovanni, 2016. "Are Smart Beta strategies suitable for hedge fund portfolios?," Review of Financial Economics, Elsevier, vol. 29(C), pages 37-51.
    13. Enrico Giorgi & Thorsten Hens & János Mayer, 2007. "Computational aspects of prospect theory with asset pricing applications," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 267-281, May.
    14. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:16:y:2019:i:1:d:10.1007_s10287-018-0333-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Mallaigh Nolan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.