IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v155y2019i2d10.1007_s10584-019-02442-5.html
   My bibliography  Save this article

Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5

Author

Listed:
  • Teerachai Amnuaylojaroen

    (University of Phayao
    University of Phayao)

  • Pavinee Chanvichit

    (University of Phayao)

Abstract

In order to plan for agricultural irrigation, the drought risk and amount of water needed for crops must be well studied. In this work, we apply the Standard Precipitation Index (SPI) and Crop Water Need (CWN) using input data from a fine-resolution Nested Regional Climate Model (NRCM) to assess the risk of future agricultural drought in Mainland Southeast Asia from 2020 to 2029. The NRCM was performed with resolutions of 60 and 10-km grid spacing for the present (1990–1999) and the future (2020–2029). The model employs initial and boundary conditions from the Community Climate System Model Version 4 (CCSM4) for meteorological variables. Two simulations, present-day (1990–1999) and future (2020–2029), were conducted under the Representative Concentration Pathway (RCP) 8.5 climate scenario. In general, the comparison between the NRCM predictions and observed data shows that the NRCM reasonably predicts precipitation and 2-m temperature with a high correlation of 0.89–0.98 and index of agreement (IOA) values ranging from 0.76 to 0.95. The future precipitation tends to decrease by (−1)–(1) mm/day, while the temperature will increase by up to 2–3 °C, which are favorable conditions for drought risk. Additionally, the SPI values between (− 1.5) and 0 for both the dry and rainy seasons indicate a high possibility of drought events in the future. There seemed to be some evidence of drought risk in this region, but the calculation of CWN indicates that the region will remain relatively water rich for agriculture.

Suggested Citation

  • Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2019. "Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5," Climatic Change, Springer, vol. 155(2), pages 175-193, July.
  • Handle: RePEc:spr:climat:v:155:y:2019:i:2:d:10.1007_s10584-019-02442-5
    DOI: 10.1007/s10584-019-02442-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02442-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02442-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Done & Greg Holland & Cindy Bruyère & L. Leung & Asuka Suzuki-Parker, 2015. "Modeling high-impact weather and climate: lessons from a tropical cyclone perspective," Climatic Change, Springer, vol. 129(3), pages 381-395, April.
    2. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Guohua & Geng, Chenfan & Zhao, Yong & Wang, Jianhua & Jiang, Shan & Zhu, Yongnan & Wang, Qingming & Wang, Lizhen & Mu, Xing, 2021. "Food habit and climate change impacts on agricultural water security during the peak population period in China," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Teerachai Amnuaylojaroen & Pavinee Chanvichit & Radshadaporn Janta & Vanisa Surapipith, 2021. "Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    3. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2022. "Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    4. Chloe Sutcliffe & Ian Holman & Daniel Goodwin & Gloria Salmoral & Liwa Pardthaisong & Supattra Visessri & Chaiwat Ekkawatpanit & Dolores Rey, 2024. "Which factors determine adaptation to drought amongst farmers in Northern Thailand? Investigating farmers’ appraisals of risk and adaptation and their exposure to drought information communications as," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    3. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    4. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    5. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    6. X. Zhang & Y. Yamaguchi, 2014. "Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2129-2145, December.
    7. Jinsoo Hwang & Hyunjoon Kim, 2019. "Consequences of a green image of drone food delivery services: The moderating role of gender and age," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 872-884, July.
    8. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    9. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    11. Sabine Liebenehm & Ingmar Schumacher & Eric Strobl, 2024. "Rainfall shocks and risk aversion: Evidence from Southeast Asia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 145-176, January.
    12. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    13. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Mohammad Shafi Bhat & Sumira Mir & Hilal Ahmad Parrey & Irshad Ahmad Thoker & Shamim Ahmad Shah, 2024. "Climate change, hailstorm incidence, and livelihood security: a perspective from Kashmir valley India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2803-2827, February.
    15. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    16. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.
    17. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    18. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    19. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    20. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:155:y:2019:i:2:d:10.1007_s10584-019-02442-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.