IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i10p1021-d645343.html
   My bibliography  Save this article

Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China

Author

Listed:
  • Yuqing Zhang

    (School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223300, China)

  • Guangxiong Mao

    (School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223300, China)

  • Changchun Chen

    (School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Liucheng Shen

    (School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China)

  • Binyu Xiao

    (School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223300, China)

Abstract

The frequency, duration, and magnitude of heatwaves and droughts are expected to increase in a warming climate, which can have profound impacts on the environment, society, and public health, and these may be severely affected specifically by compound droughts and heatwaves (CDHWs). On the basis of daily maximum temperature data and the one-month standardized precipitation evapotranspiration index (SPEI) from 1961 to 2018, the Gan River Basin (GRB) was taken as a case here to construct CDHW identification indicators and quantify the population exposure to CDHWs. We found that ERA5 reanalysis data performed well in overall simulating temperature, precipitation, one-month SPEI, heatwaves, and CDHWs in the GRB from 1961 to 2018. CDHWs during the period from 1997 to 2018 were slightly higher than that in 1961–1997. CDHWs were more likely to occur in the southern parts of the basin due to the relatively high values of drought–heatwave dependence indices. Atmospheric circulation analysis of the 2003 CDHW in the GRB showed a relatively long-lasting anomalous high pressure and anticyclonic circulation system, accompanied by the positive convective inhibition and surface net solar radiation anomalies. These circulating background fields eventually led to the exceptional 2003 CDHW occurrence in the GRB. The population exposure to CDHWs basically increased, especially for the moderate CDHWs in ERA5. The change in total exposure was mainly due to climate change. Compared with the period from 1989 to 1998, the contributions of the population change effect in 2009–2018 gradually increased with the increase in the CDHW magnitude both in the observations and ERA5 reanalysis data.

Suggested Citation

  • Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:10:p:1021-:d:645343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/10/1021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/10/1021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. M. Rasmijn & G. Schrier & R. Bintanja & J. Barkmeijer & A. Sterl & W. Hazeleger, 2018. "Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints," Nature Climate Change, Nature, vol. 8(5), pages 381-385, May.
    2. Bryan Jones & Brian C. O’Neill & Larry McDaniel & Seth McGinnis & Linda O. Mearns & Claudia Tebaldi, 2015. "Future population exposure to US heat extremes," Nature Climate Change, Nature, vol. 5(7), pages 652-655, July.
    3. Nina N. Ridder & Andy J. Pitman & Seth Westra & Anna Ukkola & Hong X. Do & Margot Bador & Annette L. Hirsch & Jason P. Evans & Alejandro Luca & Jakob Zscheischler, 2020. "Global hotspots for the occurrence of compound events," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    5. Avela Pamla & Gladman Thondhlana & Sheunesu Ruwanza, 2021. "Persistent Droughts and Water Scarcity: Households’ Perceptions and Practices in Makhanda, South Africa," Land, MDPI, vol. 10(6), pages 1-13, June.
    6. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    7. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    8. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    9. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanqin Xu & Shuai Han & Chunxiang Shi & Rui Tao & Jiaojiao Zhang & Yu Zhang & Zheng Wang, 2023. "Comparative Analysis of Three Near-Surface Air Temperature Reanalysis Datasets in Inner Mongolia Region," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Elisabeth Tschumi & Jakob Zscheischler, 2020. "Countrywide climate features during recorded climate-related disasters," Climatic Change, Springer, vol. 158(3), pages 593-609, February.
    7. Chunxiang Li & Tianbao Zhao & Kairan Ying, 2017. "Quantifying the contributions of anthropogenic and natural forcings to climate changes over arid-semiarid areas during 1946–2005," Climatic Change, Springer, vol. 144(3), pages 505-517, October.
    8. Wen Song & Shisong Cao & Mingyi Du & You Mo & Suju Li, 2022. "Investigation of compound drought risk and driving factors in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1365-1391, November.
    9. Kai Tao & Jian Fang & Wentao Yang & Jiayi Fang & Baoyin Liu, 2023. "Characterizing compound floods from heavy rainfall and upstream–downstream extreme flow in middle Yangtze River from 1980 to 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1097-1114, January.
    10. Orpita U. Laz & Ataur Rahman & Taha B. M. J. Ouarda, 2023. "Compound heatwave and drought hotspots and their trends in Southeast Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 357-386, October.
    11. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    13. Lei Ye & Ke Shi & Zhuohang Xin & Chao Wang & Chi Zhang, 2019. "Compound Droughts and Heat Waves in China," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    14. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    15. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    17. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    18. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    19. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    20. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:10:p:1021-:d:645343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.