IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3336-d519380.html
   My bibliography  Save this article

Effects of Soil Water Deficit on Three Tree Species of the Arid Environment: Variations in Growth, Physiology, and Antioxidant Enzyme Activities

Author

Listed:
  • Fahad Rasheed

    (Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan)

  • Adnan Gondal

    (Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan)

  • Kamziah Abdul Kudus

    (Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Sri Serdang 43400, Selangor, Malaysia)

  • Zikria Zafar

    (Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan
    Department of Forest Genetics and Forest Tree Breeding, University of Göettingen, Büsgenweg 2, 37077 Göttingen, Germany)

  • Muhammad Farrakh Nawaz

    (Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan)

  • Waseem Razzaq Khan

    (Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Sri Serdang 43400, Selangor, Malaysia
    Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Sarawak, Malaysia)

  • Muhammad Abdullah

    (Cholistan Institute of Desert Studies (CIDS), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan)

  • Faridah Hanum Ibrahim

    (Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Sarawak, Malaysia)

  • Claire Depardieu

    (Canada Research Chair for Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada)

  • Ahmad Mustapha Mohamad Pazi

    (Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Sri Serdang 43400, Selangor, Malaysia)

  • Khayyam Anjum

    (Department of Forestry & Range Management, University of Agriculture, Faisalabad 38040, Pakistan)

  • Shazia Afzal

    (Department of Forestry, University of Sargodha, Sargodha 40100, Pakistan)

  • Seemab Akram

    (Department of Biology, Faculty of Science, Universiti Putra Malaysia, Sri Serdang 43400, Selangor, Malaysia)

  • Mohd Nazre

    (Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Sri Serdang 43400, Selangor, Malaysia)

Abstract

Low water availability predicted under climate change is a major abiotic factor limiting plants growth and productivity. In this study a greenhouse experiment was conducted on three important tree species of arid environment: Conocarpus erectus ( CE ), Acacia modesta ( AM ), and Salix tetrasperma ( ST ). Young saplings were subjected to control (C), medium (MWD) and severe soil water deficit (SWD) treatments and response was evaluated. Results showed that in all the three species leaf, stem and root dry weight production remained similar to C under MWD treatment but decreased significantly under SWD. The highest decrease in total dry weight was noticed in ST and the lowest was evidenced in AM under SWD. Root:shoot ratio increased significantly in both CE and AM under MWD and SWD. Furthermore, chlorophyll content decreased while proline content increased significantly in both MWD and SWD treatments. The production of oxidants (hydrogen peroxide and superoxide anions) and antioxidants (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) increased significantly under both MWD and SWD treatments and were the highest in AM in both MWD and SWD treatments. Therefore, we may conclude that all the three species can tolerate medium water stress due to increased root production and an effective antioxidant defense mechanism.

Suggested Citation

  • Fahad Rasheed & Adnan Gondal & Kamziah Abdul Kudus & Zikria Zafar & Muhammad Farrakh Nawaz & Waseem Razzaq Khan & Muhammad Abdullah & Faridah Hanum Ibrahim & Claire Depardieu & Ahmad Mustapha Mohamad , 2021. "Effects of Soil Water Deficit on Three Tree Species of the Arid Environment: Variations in Growth, Physiology, and Antioxidant Enzyme Activities," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3336-:d:519380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahar Ezzat & Abdelaziz Gaiballa & Mosaed A. Majrashi & Zafer Alasmary & Hesham M. Ibrahim & Meshal Abdullah Harbi & Abdullah Abldubise & Munirah Ayid Alqahtani & Abdulaziz G. Alghamdi, 2025. "Assessment of the Effect of Applying Sustainable Irrigation Systems on the Growth of Three Selected Rangelands’ Plants in Semi-Arid Areas of Saudi Arabia," Sustainability, MDPI, vol. 17(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    3. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Jinsoo Hwang & Hyunjoon Kim, 2019. "Consequences of a green image of drone food delivery services: The moderating role of gender and age," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 872-884, July.
    5. Seyed Mohammadreza Mahdavian & Fatemeh Askari & Hamed Kioumarsi & Reza Naseri Harsini & Hushang Dehghanzadeh & Behnaz Saboori, 2025. "Modeling the linkage between climate change, CH4 emissions, and land use with Iran's livestock production: A food security perspective," Natural Resources Forum, Blackwell Publishing, vol. 49(3), pages 2954-2977, August.
    6. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    7. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    8. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.
    10. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    11. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    12. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    13. Eleftherios Giovanis & Oznur Ozdamar, 2025. "The transboundary effects of climate change and global adaptation: the case of the Euphrates–Tigris water basin in Turkey and Iraq," Empirical Economics, Springer, vol. 68(4), pages 1935-1972, April.
    14. Baez, Javier E. & Kshirsagar, Varun & Skoufias, Emmanuel, 2024. "Drought-sensitive targeting and child growth faltering in Southern Africa," World Development, Elsevier, vol. 182(C).
    15. Zheng Zeng & Wei-Ge Luo & Fa-Cheng Yi & Feng-Yu Huang & Cheng-Xia Wang & Yi-Ping Zhang & Qiang-Qiang Cheng & Zhe Wang, 2021. "Horizontal Distribution of Cadmium in Urban Constructed Wetlands: A Case Study," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    16. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    17. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    18. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Özsoy, S. Mehmet & Rasteh, Mehdi & Yönder, Erkan, 2025. "Understanding drought shocks: Bank financial stability and loan performance," Global Finance Journal, Elsevier, vol. 65(C).
    20. repec:avg:wpaper:en18043 is not listed on IDEAS
    21. Mariam Nguvava & Babatunde J. Abiodun, 2023. "Potential impacts of 1.5 °C and 2 °C global warming levels on drought modes over Eastern Africa," Climatic Change, Springer, vol. 176(12), pages 1-17, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3336-:d:519380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.