IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v148y2018i3d10.1007_s10584-017-2011-3.html
   My bibliography  Save this article

Vulnerability of California specialty crops to projected mid-century temperature changes

Author

Listed:
  • Amber Kerr

    (USDA California Climate Hub
    University of California, Davis)

  • Jake Dialesandro

    (University of California
    USDA Southwest Climate Hub)

  • Kerri Steenwerth

    (USDA California Climate Hub
    USDA-ARS Crops Pathology and Genetics Research Unit)

  • Nathan Lopez-Brody

    (USDA Southwest Climate Hub
    New Mexico State University)

  • Emile Elias

    (USDA Southwest Climate Hub
    USDA-ARS Range Management Research Unit)

Abstract

Increasing global temperatures are likely to have major impacts on agriculture, but the effects will vary by crop and location. This paper describes the temperature sensitivity and exposure of selected specialty crops in California. We used literature synthesis to create several sensitivity indices (from 1 to 4) to changes in winter minimum and summer maximum temperature for the top 14 specialty crops. To estimate exposure, we used seasonal period change analysis of mid-century minimum and maximum temperature changes downscaled to county level from CMIP5 models. We described crop vulnerability on a county basis as (crop sensitivity index × county climate exposure × area of crop in county); individual crop vulnerabilities were combined to create an aggregate index of specialty crop vulnerability by county. We also conducted analyses scaled by crop value rather than area, and normalized to total specialty crop area in each county. Our analyses yielded a spatial assessment highlighting seasons and counties of highest vulnerability. Winter and summer vulnerability are correlated, but not highly so. High-producing counties (e.g., Fresno County in the San Joaquin Valley) are the most vulnerable in absolute terms, while northern Sacramento Valley counties are the most vulnerable in relative terms, due to their reliance on heat-sensitive perennial crops. Our results illustrate the importance of examining crop vulnerability from different angles. More physiological and economic research is needed to build a comprehensive picture of specialty crop vulnerability to climate change.

Suggested Citation

  • Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
  • Handle: RePEc:spr:climat:v:148:y:2018:i:3:d:10.1007_s10584-017-2011-3
    DOI: 10.1007/s10584-017-2011-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2011-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2011-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    2. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    3. L. Jackson & S. Wheeler & A. Hollander & A. O’Geen & B. Orlove & J. Six & D. Sumner & F. Santos-Martin & J. Kramer & W. Horwath & R. Howitt & T. Tomich, 2011. "Case study on potential agricultural responses to climate change in a California landscape," Climatic Change, Springer, vol. 109(1), pages 407-427, December.
    4. Eugene Cordero & Wittaya Kessomkiat & John Abatzoglou & Steven Mauget, 2011. "The identification of distinct patterns in California temperature trends," Climatic Change, Springer, vol. 108(1), pages 357-382, September.
    5. Brian Joyce & Vishal Mehta & David Purkey & Larry Dale & Michael Hanemann, 2011. "Modifying agricultural water management to adapt to climate change in California’s central valley," Climatic Change, Springer, vol. 109(1), pages 299-316, December.
    6. Mehta, Vishal K. & Haden, Van R. & Joyce, Brian A. & Purkey, David R. & Jackson, Louise E., 2013. "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California," Agricultural Water Management, Elsevier, vol. 117(C), pages 70-82.
    7. David Lobell & Angela Torney & Christopher Field, 2011. "Climate extremes in California agriculture," Climatic Change, Springer, vol. 109(1), pages 355-363, December.
    8. Olivier Deschenes & Charles Kolstad, 2011. "Economic impacts of climate change on California agriculture," Climatic Change, Springer, vol. 109(1), pages 365-386, December.
    9. David Lobell & Christopher Field, 2011. "California perennial crops in a changing climate," Climatic Change, Springer, vol. 109(1), pages 317-333, December.
    10. Juhwan Lee & Steven Gryze & Johan Six, 2011. "Effect of climate change on field crop production in California’s Central Valley," Climatic Change, Springer, vol. 109(1), pages 335-353, December.
    11. Josué Medellín-Azuara & Richard Howitt & Duncan MacEwan & Jay Lund, 2011. "Economic impacts of climate-related changes to California agriculture," Climatic Change, Springer, vol. 109(1), pages 387-405, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamara S. Wilson & Nathan D. Van Schmidt & Ruth Langridge, 2020. "Land-Use Change and Future Water Demand in California’s Central Coast," Land, MDPI, vol. 9(9), pages 1-21, September.
    2. Quandt, Amy, 2023. "“You have to be resilient”: Producer perspectives to navigating a changing agricultural system in California, USA," Agricultural Systems, Elsevier, vol. 207(C).
    3. Heng Chen & Jennifer K. Ryan, 2023. "Optimal specialty crop planning policies with yield learning and forward contract," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 359-378, February.
    4. Eduardo Fernandez & Cory Whitney & Italo F. Cuneo & Eike Luedeling, 2020. "Prospects of decreasing winter chill for deciduous fruit production in Chile throughout the 21st century," Climatic Change, Springer, vol. 159(3), pages 423-439, April.
    5. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    6. Gabriel Granco & Haoji He & Brandon Lentz & Jully Voong & Alan Reeve & Exal Vega, 2023. "Mid- and End-of-the-Century Estimation of Agricultural Suitability of California’s Specialty Crops," Land, MDPI, vol. 12(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
    2. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    3. Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2011. "Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 109(1), pages 1-19, December.
    4. Mehta, Vishal K. & Haden, Van R. & Joyce, Brian A. & Purkey, David R. & Jackson, Louise E., 2013. "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California," Agricultural Water Management, Elsevier, vol. 117(C), pages 70-82.
    5. Jisang Yu & Gyuhyeong Goh, 2022. "Estimating temperature impacts on perennial crop losses in California: Insights from insurance data," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1409-1423, September.
    6. Zach Conrad & Christian J. Peters & Kenneth Chui & Lisa Jahns & Timothy S. Griffin, 2017. "Agricultural Capacity to Increase the Production of Select Fruits and Vegetables in the US: A Geospatial Modeling Analysis," IJERPH, MDPI, vol. 14(10), pages 1-15, September.
    7. Naveed Ahmed & Haishen Lü & Shakeel Ahmed & Ghulam Nabi & Muhammad Abdul Wajid & Aamir Shakoor & Hafiz Umar Farid, 2021. "Irrigation Supply and Demand, Land Use/Cover Change and Future Projections of Climate, in Indus Basin Irrigation System, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    9. Bruno, Ellen & Hadachek, Jeffrey & Hagerty, Nick & Jessoe, Katrina K., 2022. "Unintended costs of climate change adaption: Agricultural wells and access to drinking water," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322241, Agricultural and Applied Economics Association.
    10. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    11. Welle, Paul D. & Medellín-Azuara, Josué & Viers, Joshua H. & Mauter, Meagan S., 2017. "Economic and policy drivers of agricultural water desalination in California’s central valley," Agricultural Water Management, Elsevier, vol. 194(C), pages 192-203.
    12. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    13. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    14. Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    15. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    16. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2022. "Risk preferences, intra-household dynamics and spatial effects on chemical inputs use: Case of small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 122(C).
    17. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    18. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    19. Attavanich, Witsanu & McCarl, Bruce A. & Fuller, Stephen W. & Vedenov, Dmitry V. & Ahmedov, Zafarbek, 2011. "The Effect of Climate Change on Transportation Flows and Inland Waterways Due to Climate-Induced Shifts in Crop Production Patterns," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 109241, Agricultural and Applied Economics Association.
    20. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:148:y:2018:i:3:d:10.1007_s10584-017-2011-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.