IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12237-d926437.html
   My bibliography  Save this article

A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar

Author

Listed:
  • Rakotoarimanana Zy Harifidy

    (Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu 400-8511, Japan)

  • Rakotoarimanana Zy Misa Harivelo

    (College of Civil Engineering, Tongji University, No. 1239, Si Ping Rd., Shanghai 200092, China)

  • Ishidaira Hiroshi

    (Interdisciplinary Centre for River Basin Environment, University of Yamanashi, Kofu 400-8511, Japan)

  • Magome Jun

    (Interdisciplinary Centre for River Basin Environment, University of Yamanashi, Kofu 400-8511, Japan)

  • Souma Kazuyoshi

    (Interdisciplinary Centre for River Basin Environment, University of Yamanashi, Kofu 400-8511, Japan)

Abstract

Assessing water resources at a large river basin scale is important for having an idea of the water situation and efficient water resources management. What is the most appropriate approach to assess the water resources at a large river basin scale? This paper aims to develop a systematic review on water resources assessment at a large river basin scale, intending to present a new assessment method for the major river basins in Madagascar. This review investigates 40 articles from Google Scholar, Web of Science, and PubMed databases, from 2000 to 2022. This review has demonstrated the necessity of water resources assessment at a large river basin scale in Madagascar. An improvement in the use of multiple GCMs and SWAT models for water resources assessment within the basin was found necessary for appropriate water allocating regimes among upper and lower reaches. Water allocation and water scarcity at the basin level could be addressed by using the inter- and intra-basin approaches. The review concludes that a combination of the SWAT, multiple GCMs, and inter- and intra-basin approaches could be efficiently applied for assessing the water resources at a large basin scale. This review may be of benefit to scientists and water specialists.

Suggested Citation

  • Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12237-:d:926437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C.-Y. Xu & V. P. Singh, 2004. "Review on Regional Water Resources Assessment Models under Stationary and Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(6), pages 591-612, December.
    2. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    3. Juhwan Lee & Steven Gryze & Johan Six, 2011. "Effect of climate change on field crop production in California’s Central Valley," Climatic Change, Springer, vol. 109(1), pages 335-353, December.
    4. Francisco Nunes Correia & Filipe Castro Rego & Maria Da Grača Saraiva & Isabel Ramos, 1998. "Coupling GIS with Hydrologic and Hydraulic Flood Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(3), pages 229-249, June.
    5. McKinney, D. C. & Cai, X. & Rosegrant, M. W. & Ringler, C. & Scott, C. A., 1999. "Modeling water resources management at the basin level: review and future directions," IWMI Books, Reports H024075, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Aversa & Nino Adamashvili & Mariantonietta Fiore & Alessia Spada, 2022. "Scoping Review (SR) via Text Data Mining on Water Scarcity and Climate Change," Sustainability, MDPI, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    2. Jianshi Zhao & Zhongjing Wang & Daoxi Wang & Dangxian Wang, 2009. "Evaluation of Economic and Hydrologic Impacts of Unified Water Flow Regulation in the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1387-1401, May.
    3. Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2012. "Erratum to: Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 113(3), pages 1099-1100, August.
    4. Shanshan Wen & Buda Su & Jinlong Huang & Yanjun Wang & Simon Treu & Fushuang Jiang & Shan Jiang & Han Jiang, 2024. "Attribution of streamflow changes during 1961–2019 in the Upper Yangtze and the Upper Yellow River basins," Climatic Change, Springer, vol. 177(4), pages 1-20, April.
    5. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.
    6. Carlos Bana e Costa & Paula Antão da Silva & Francisco Nunes Correia, 2004. "Multicriteria Evaluation of Flood Control Measures: The Case of Ribeira do Livramento," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 263-283, June.
    7. Yaoyu Li & Kaixuan Li & Xifeng Liu & Zhimin Zhang & Zihao Gao & Qiang Wang & Guofang Wang & Wuping Zhang, 2025. "Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions," Agriculture, MDPI, vol. 15(13), pages 1-23, July.
    8. Sandra Mourato & Madalena Moreira & João Corte-Real, 2015. "Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2377-2391, May.
    9. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    10. Kishore, Siddharth & Nemati, Mehdi & Dinar, Ariel & Struthers, Cory & MacKenzie, Scott A. & Shugart, Matthew S., 2024. "The Impact of Dust Exposure on Farmland Market: Evidence from the California’s Central Valley," 2024 Annual Meeting, July 28-30, New Orleans, LA 343546, Agricultural and Applied Economics Association.
    11. Houba, Harold & Pham Do, Kim Hang & Zhu, Xueqin, 2012. "Transboundary Water Management: A joint management approach to the Mekong River Basin," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 125063, Australian Agricultural and Resource Economics Society.
    12. Niranjan Pramanik & Rabindra Panda & Dhrubajyoti Sen, 2010. "One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 835-852, March.
    13. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
    14. Letcher, R.A. & Croke, B.F.W. & Jakeman, A.J. & Merritt, W.S., 2006. "An integrated modelling toolbox for water resources assessment and management in highland catchments: Model description," Agricultural Systems, Elsevier, vol. 89(1), pages 106-131, July.
    15. Heike Wanke & Armin Dünkeloh & Peter Udluft, 2008. "Groundwater Recharge Assessment for the Kalahari Catchment of North-eastern Namibia and North-western Botswana with a Regional-scale Water Balance Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1143-1158, September.
    16. Sharma, R.N. & Chand, Narottam & Sharma, Veena & Yadav, Deepika, 2015. "Decision support system for operation, scheduling and optimization of hydro power plant in Jammu and Kashmir region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1099-1113.
    17. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    18. Flavia Tromboni & Lucia Bortolini & José Morábito, 2014. "Integrated hydrologic–economic decision support system for groundwater use confronting climate change uncertainties in the Tunuyán River basin, Argentina," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(6), pages 1317-1336, December.
    19. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    20. Crispin Cunya, Marianella & Ponce Oliva, Roberto Daniel & Rendon Schneir, Eric & Arias Montevechio, Esteban Eduardo, . "Modelamiento hidro-económico de los efectos del cambio climático y política en la agricultura andina," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 23(01).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12237-:d:926437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.