IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v18y2004i6p591-612.html
   My bibliography  Save this article

Review on Regional Water Resources Assessment Models under Stationary and Changing Climate

Author

Listed:
  • C.-Y. Xu
  • V. P. Singh

Abstract

A comprehensive assessment of the water resources available in a region or a river basin is essential for finding sustainable solutions for water-related problems concerning both the quantity and quality of the water resources. Research on the development and application of water balance models at different spatial and temporal scales has been carried out since later part of the 19th century. As a result, a great deal of experience on various models and methods has been gained. This paper reviews both traditional long-term water balance methods and the new generation distributed models for assessing available water resources under stationary and changing climatic conditions at different spatial and temporal scales. The applicability and limitations of the methods are addressed. Finally, current advances and challenges in regional- and large-scale assessment of water resources are presented. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • C.-Y. Xu & V. P. Singh, 2004. "Review on Regional Water Resources Assessment Models under Stationary and Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(6), pages 591-612, December.
  • Handle: RePEc:spr:waterr:v:18:y:2004:i:6:p:591-612
    DOI: 10.1007/s11269-004-9130-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-004-9130-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-004-9130-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong-yu Xu, 2000. "Modelling the Effects of Climate Change on Water Resources in Central Sweden," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(3), pages 177-189, June.
    2. C.-Y. Xu & V. Singh, 1998. "A Review on Monthly Water Balance Models for Water Resources Investigations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(1), pages 20-50, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Imran Khan & Dong Liu & Qiang Fu & Shuhua Dong & Umar Waqas Liaqat & Muhammad Abrar Faiz & Yuxiang Hu & Qaisar Saddique, 2016. "Recent Climate Trends and Drought Behavioral Assessment Based on Precipitation and Temperature Data Series in the Songhua River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4839-4859, October.
    2. Yog Aryal & Jianting Zhu, 2017. "On bias correction in drought frequency analysis based on climate models," Climatic Change, Springer, vol. 140(3), pages 361-374, February.
    3. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    4. Zahidul Islam & Thian Gan, 2015. "Future Irrigation Demand of South Saskatchewan River Basin under the Combined Impacts of Climate Change and El Niño Southern Oscillation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2091-2105, April.
    5. Yonghong Hao & Bibo Cao & Xiang Chen & Jian Yin & Ronglin Sun & Tian-Chyi Yeh, 2013. "A Piecewise Grey System Model for Study the Effects of Anthropogenic Activities on Karst Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1207-1220, March.
    6. Jinjie Miao & Guoliang Liu & Bibo Cao & Yonghong Hao & Jianmimg Chen & Tian−Chyi Yeh, 2014. "Identification of Strong Karst Groundwater Runoff Belt by Cross Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2903-2916, August.
    7. Olga A. CHERNOVA, 2018. "Information Risks in Water Resources Management of a Region," Upravlenets, Ural State University of Economics, vol. 9(5), pages 40-47, October.
    8. Martin Hanel & Magdalena Mrkvičková & Petr Máca & Adam Vizina & Pavel Pech, 2013. "Evaluation of Simple Statistical Downscaling Methods for Monthly Regional Climate Model Simulations with Respect to the Estimated Changes in Runoff in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5261-5279, December.
    9. Heike Wanke & Armin Dünkeloh & Peter Udluft, 2008. "Groundwater Recharge Assessment for the Kalahari Catchment of North-eastern Namibia and North-western Botswana with a Regional-scale Water Balance Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1143-1158, September.
    10. Babak Amirataee & Majid Montaseri, 2017. "The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 89-106, March.
    11. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    12. Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    13. Lingling Zhao & Jun Xia & Leszek Sobkowiak & Zhonggen Wang & Fengrui Guo, 2012. "Spatial Pattern Characterization and Multivariate Hydrological Frequency Analysis of Extreme Precipitation in the Pearl River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3619-3637, September.
    14. Sandra Mourato & Madalena Moreira & João Corte-Real, 2015. "Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2377-2391, May.
    15. Subimal Ghosh & Sudhir Katkar, 2012. "Modeling Uncertainty Resulting from Multiple Downscaling Methods in Assessing Hydrological Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3559-3579, September.
    16. Qiang Zhang & Chong-Yu Xu & Tao Yang, 2009. "Variability of Water Resource in the Yellow River Basin of Past 50 Years, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1157-1170, April.
    17. Liem Tran & Robert O’Neill & Elizabeth Smith & Randall Bruins & Carol Harden, 2013. "Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1601-1617, March.
    18. B. Fiseha & S. Setegn & A. Melesse & E. Volpi & A. Fiori, 2014. "Impact of Climate Change on the Hydrology of Upper Tiber River Basin Using Bias Corrected Regional Climate Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1327-1343, March.
    19. Wei Li & Jianzhong Zhou & Huaiwei Sun & Kuaile Feng & Hairong Zhang & Muhammad Tayyab, 2017. "Impact of Distribution Type in Bayes Probability Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 961-977, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Dou & Mingbin Huang & Yang Hong, 2009. "Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1935-1949, August.
    2. Heike Wanke & Armin Dünkeloh & Peter Udluft, 2008. "Groundwater Recharge Assessment for the Kalahari Catchment of North-eastern Namibia and North-western Botswana with a Regional-scale Water Balance Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1143-1158, September.
    3. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    4. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    5. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
    6. Kisekka, Isaya & Kandelous, Maziar M. & Sanden, Blake & Hopmans, Jan W., 2019. "Uncertainties in leaching assessment in micro-irrigated fields using water balance approach," Agricultural Water Management, Elsevier, vol. 213(C), pages 107-115.
    7. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    8. Kim, Ungtae & Kaluarachchi, Jagath J. & Smakhtin, Vladimir U., 2008. "Climate change impacts on hydrology and water resources of the Upper Blue Nile River Basin, Ethiopia," IWMI Research Reports 53025, International Water Management Institute.
    9. Md. Islam & Toshiya Aramaki & Keisuke Hanaki, 2005. "Development and Application of an Integrated Water Balance Model to Study the Sensitivity of the Tokyo Metropolitan Area Water Availability Scenario to Climatic Changes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 423-445, August.
    10. Zhe Yuan & Denghua Yan & Zhiyong Yang & Jijun Xu & Junjun Huo & Yanlai Zhou & Cheng Zhang, 2018. "Attribution assessment and projection of natural runoff change in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 27-49, January.
    11. Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
    12. Jordan Labbe & Hélène Celle & Jean-Luc Devidal & Julie Albaric & Gilles Mailhot, 2023. "Combined Impacts of Climate Change and Water Withdrawals on the Water Balance at the Watershed Scale—The Case of the Allier Alluvial Hydrosystem (France)," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    13. Chul-Hee Lim & Yuyoung Choi & Moonil Kim & Soo Jeong Lee & Christian Folberth & Woo-Kyun Lee, 2018. "Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    14. Mustafa Goodarzi & Jahangir Abedi-Koupai & Manouchehr Heidarpour & Hamid Reza Safavi, 2016. "Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 133-148, January.
    15. Eitzinger, J. & Stastna, M. & Zalud, Z. & Dubrovsky, M., 2003. "A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios," Agricultural Water Management, Elsevier, vol. 61(3), pages 195-217, July.
    16. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    17. Slobodan P. Simonovic, 2017. "Bringing Future Climatic Change into Water Resources Management Practice Today," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2933-2950, August.
    18. Ángel De Miguel & Malaak Kallache & Eloy García-Calvo, 2015. "The Water Footprint of Agriculture in Duero River Basin," Sustainability, MDPI, vol. 7(6), pages 1-22, May.
    19. Chong-yu Xu, 2001. "Statistical Analysis of Parameters and Residuals of a Conceptual Water Balance Model – Methodology and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(2), pages 75-92, April.
    20. Roland Barthel & Stephan Janisch & Darla Nickel & Aleksandar Trifkovic & Thomas Hörhan, 2010. "Using the Multiactor-Approach in G lowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 239-275, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:18:y:2004:i:6:p:591-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.