IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i7p1387-1401.html
   My bibliography  Save this article

Evaluation of Economic and Hydrologic Impacts of Unified Water Flow Regulation in the Yellow River Basin

Author

Listed:
  • Jianshi Zhao
  • Zhongjing Wang
  • Daoxi Wang
  • Dangxian Wang

Abstract

Unified water flow regulation has been implemented in the Yellow River, Hei River and Tarim River in China since 1999 as a result of institutional reforms. It has been one of the most important water resources management practices in China during recent years and has generated significant impacts. Based on the data of such an experiment in the Yellow River during 1999 to 2004, a “with-without” scenario analysis method is employed in the paper to evaluate the economic and hydrological impacts of regulation through a holistic model coupling economic water use and hydrologic cycle applied to the study basin. The results show that about 2.5% of GDP was increased every year and the Flow Cutoff Events were avoided as a result of the unified water flow regulation. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Jianshi Zhao & Zhongjing Wang & Daoxi Wang & Dangxian Wang, 2009. "Evaluation of Economic and Hydrologic Impacts of Unified Water Flow Regulation in the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1387-1401, May.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:7:p:1387-1401
    DOI: 10.1007/s11269-008-9332-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9332-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9332-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Whittington, Dale, 1998. "Administering contingent valuation surveys in developing countries," World Development, Elsevier, vol. 26(1), pages 21-30, January.
    2. Terry Roe & Xinshen Diao, 2000. "Water, externality and strategic interdependence: a general equilibrium analysis," Journal of International Development, John Wiley & Sons, Ltd., vol. 12(2), pages 149-167.
    3. Mukherjee, Natasha, 1996. "Water and land in South Africa: economywide impacts of reform a case study for the Olifants river," TMD discussion papers 12, International Food Policy Research Institute (IFPRI).
    4. McKinney, D. C. & Cai, X. & Rosegrant, M. W. & Ringler, C. & Scott, C. A., 1999. "Modeling water resources management at the basin level: review and future directions," IWMI Books, Reports H024075, International Water Management Institute.
    5. Graeme Dandy & Tin Nguyen & Carolyn Davies, 1997. "Estimating Residential Water Demand in the Presence of Free Allowances," Land Economics, University of Wisconsin Press, vol. 73(1), pages 125-139.
    6. Linda K. Lee & L. Joe Moffitt, 1993. "Defensive Technology and Welfare Analysis of Environmental Quality Change with Uncertain Consumer Health Impacts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 361-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Jiang & Feng Wu & Yu Liu & Xiangzheng Deng, 2014. "Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis," Sustainability, MDPI, vol. 6(11), pages 1-15, October.
    2. Zhong-kai Feng & Wen-jing Niu & Peng-fei Shi & Tao Yang, 2022. "Adaptive Neural-Based Fuzzy Inference System and Cooperation Search Algorithm for Simulating and Predicting Discharge Time Series Under Hydropower Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2795-2812, June.
    3. Silvestre García Jalón, 2020. "FlowRegEnvCost: An R Package for Assessing the Environmental Cost of River Flow Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 675-684, January.
    4. Chun Xia & Claudia Pahl-Wostl, 2012. "The Development of Water Allocation Management in The Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3395-3414, September.
    5. Zhisong Chen & Huimin Wang & Xiangtong Qi, 2013. "Pricing and Water Resource Allocation Scheme for the South-to-North Water Diversion Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1457-1472, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanh T. N. Nguyen & Kati W. Migliaccio & Edward A. Evans & Christopher J. Martinez & John J. Sansalone & Mark W. Clark, 2017. "Coupling hydrologic and economic modeling for wetland management multi-optimization in Tram Chim National Park, Vietnam," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(5), pages 842-861, May.
    2. Verbic, Miroslav & Slabe-Erker, Renata, 2009. "An econometric analysis of willingness-to-pay for sustainable development: A case study of the Volcji Potok landscape area," Ecological Economics, Elsevier, vol. 68(5), pages 1316-1328, March.
    3. Roy Brouwer & Solomon Tarfasa, 2020. "Testing hypothetical bias in a framed field experiment," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(3), pages 343-357, September.
    4. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    5. Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    6. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    7. Hermann Donfouet & Ephias Makaudze & Pierre-Alexandre Mahieu & Eric Malin, 2011. "The determinants of the willingness-to-pay for community-based prepayment scheme in rural Cameroon," International Journal of Health Economics and Management, Springer, vol. 11(3), pages 209-220, September.
    8. Younes Ben Zaied & Marie Estelle Binet, 2015. "Modelling seasonality in residential water demand: the case of Tunisia," Applied Economics, Taylor & Francis Journals, vol. 47(19), pages 1983-1996, April.
    9. Ebers Broughel, Anna, 2019. "On the ground in sunny Mexico: A case study of consumer perceptions and willingness to pay for solar-powered devices," World Development Perspectives, Elsevier, vol. 15(C), pages 1-1.
    10. Mark Hoffman & Andrew Worthington & Helen Higgs, 2005. "Modelling residential water demand with fixed volumetric charging in a large urban municipality: The case of Brisbane, Australia," School of Economics and Finance Discussion Papers and Working Papers Series 196, School of Economics and Finance, Queensland University of Technology.
    11. Desbureaux, Sébastien & Brimont, Laura, 2015. "Between economic loss and social identity: The multi-dimensional cost of avoiding deforestation in Eastern Madagascar," Ecological Economics, Elsevier, vol. 118(C), pages 10-20.
    12. Gupta, Monika, 2016. "Willingness to pay for carbon tax: A study of Indian road passenger transport," Transport Policy, Elsevier, vol. 45(C), pages 46-54.
    13. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    14. Solomon Tarfasa & Roy Brouwer, 2013. "Estimation of the public benefits of urban water supply improvements in Ethiopia: a choice experiment," Applied Economics, Taylor & Francis Journals, vol. 45(9), pages 1099-1108, March.
    15. Katrin Millock & Céline Nauges, 2010. "Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(4), pages 539-565, August.
    16. Arbues, Fernando & Villanu´a, Inmaculada & Barberán Ortí, Ramón, 2010. "Household size and residential water demand: an empirical approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 1-20.
    17. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.
    18. Richard Carson & Nicholas Flores & Norman Meade, 2001. "Contingent Valuation: Controversies and Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 173-210, June.
    19. Fercovic, Juan & Foster, William & Melo, Oscar, 2015. "Residential Water Consumption in Chile: Economic Development and Climate Change," 2015 Conference, August 9-14, 2015, Milan, Italy 211631, International Association of Agricultural Economists.
    20. Younes Ben Zaied & Nidhaleddine Ben Cheikh & Pascal Nguyen, 2017. "Modeling nonlinear water demand : The case of Tunisia," Economics Bulletin, AccessEcon, vol. 37(2), pages 637-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:7:p:1387-1401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.