IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v148y2018i1d10.1007_s10584-018-2193-3.html
   My bibliography  Save this article

Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil

Author

Listed:
  • Joana Portugal-Pereira

    (Universidade Federal do Rio de Janeiro
    Imperial College London)

  • Alexandre Koberle

    (Universidade Federal do Rio de Janeiro)

  • André F. P. Lucena

    (Universidade Federal do Rio de Janeiro)

  • Pedro R. R. Rochedo

    (Universidade Federal do Rio de Janeiro)

  • Mariana Império

    (Universidade Federal do Rio de Janeiro)

  • Ana Monteiro Carsalade

    (Universidade Federal do Rio de Janeiro)

  • Roberto Schaeffer

    (Universidade Federal do Rio de Janeiro)

  • Peter Rafaj

    (International Institute for Applied Systems Analysis (IIASA))

Abstract

This study examines the interactions between local air pollutants and greenhouse gas emissions to assess potential synergies and trade-offs between local environmental pollution and climate policies, using the power generation sector in Brazil under different carbon scenarios up to 2050 as a case study. To this end, an integrated approach was developed, combining energy scenarios under different carbon mitigation targets and a local air pollution assessment model, tailored to the context of the Brazilian power sector. Results reveal that there are deep interactions between climate change mitigation and local air pollution abatement strategies. Increasing the diffusion of low-carbon technologies results in both mitigation of climate change and lower terrestrial acidification potential impacts, due to the rapid phase-out of fossil fuel power technologies. However, local air pollution indicators for particulate matter formation and human toxicity may rise in response to greenhouse gas emission mitigation constraints, indicating the existence of potential trade-offs. Some of these trade-offs can be offset by introducing available end-of-pipe pollution control measures reinforced by dedicated air quality policies.

Suggested Citation

  • Joana Portugal-Pereira & Alexandre Koberle & André F. P. Lucena & Pedro R. R. Rochedo & Mariana Império & Ana Monteiro Carsalade & Roberto Schaeffer & Peter Rafaj, 2018. "Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil," Climatic Change, Springer, vol. 148(1), pages 293-309, May.
  • Handle: RePEc:spr:climat:v:148:y:2018:i:1:d:10.1007_s10584-018-2193-3
    DOI: 10.1007/s10584-018-2193-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2193-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2193-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Rafaj & Wolfgang Schöpp & Peter Russ & Chris Heyes & Markus Amann, 2013. "Co-benefits of post-2012 global climate mitigation policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 801-824, August.
    2. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    3. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    4. Portugal Pereira, Joana & Troncoso Parady, Giancarlos & Castro Dominguez, Bernardo, 2014. "Japan's energy conundrum: Post-Fukushima scenarios from a life cycle perspective," Energy Policy, Elsevier, vol. 67(C), pages 104-115.
    5. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
    6. J. Jason West & Steven J. Smith & Raquel A. Silva & Vaishali Naik & Yuqiang Zhang & Zachariah Adelman & Meridith M. Fry & Susan Anenberg & Larry W. Horowitz & Jean-Francois Lamarque, 2013. "Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health," Nature Climate Change, Nature, vol. 3(10), pages 885-889, October.
    7. Klausbruckner, Carmen & Annegarn, Harold & Henneman, Lucas R.F. & Rafaj, Peter, 2016. "A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies," Environmental Science & Policy, Elsevier, vol. 57(C), pages 70-78.
    8. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    9. Portugal-Pereira, Joana & Köberle, Alexandre C. & Soria, Rafael & Lucena, André F.P. & Szklo, Alexandre & Schaeffer, Roberto, 2016. "Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story," Energy, Elsevier, vol. 115(P2), pages 1424-1435.
    10. Castelo Branco, David A. & Moura, Maria Cecilia P. & Szklo, Alexandre & Schaeffer, Roberto, 2013. "Emissions reduction potential from CO2 capture: A life-cycle assessment of a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1221-1235.
    11. Peter Rafaj & Markus Amann & José Siri & Henning Wuester, 2014. "Changes in European greenhouse gas and air pollutant emissions 1960–2010: decomposition of determining factors," Climatic Change, Springer, vol. 124(3), pages 477-504, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiehui Yuan & Xunmin Ou & Gehua Wang, 2017. "Establishing a Framework to Evaluate the Effect of Energy Countermeasures Tackling Climate Change and Air Pollution: The Example of China," Sustainability, MDPI, vol. 9(9), pages 1-23, September.
    2. Chengzhou Li & Ningling Wang & Hongyuan Zhang & Qingxin Liu & Youguo Chai & Xiaohu Shen & Zhiping Yang & Yongping Yang, 2019. "Environmental Impact Evaluation of Distributed Renewable Energy System Based on Life Cycle Assessment and Fuzzy Rough Sets," Energies, MDPI, vol. 12(21), pages 1-17, November.
    3. Alexandre C. Köberle & Pedro R. R. Rochedo & André F. P. Lucena & Alexandre Szklo & Roberto Schaeffer, 2020. "Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system," Climatic Change, Springer, vol. 162(4), pages 1823-1842, October.
    4. Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
    5. Barbosa, Juliana & Dias, Luís P. & Simoes, Sofia G. & Seixas, Júlia, 2020. "When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity," Renewable Energy, Elsevier, vol. 162(C), pages 1684-1702.
    6. da Silva Neves, Marcus Vinicius & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Fossil fuel facilities exergy return for a frontier of analysis incorporating CO2 capture: The case of a coal power plant," Energy, Elsevier, vol. 284(C).
    7. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    8. Weitzel, Matthias & Saveyn, Bert & Vandyck, Toon, 2019. "Including bottom-up emission abatement technologies in a large-scale global economic model for policy assessments," Energy Economics, Elsevier, vol. 83(C), pages 254-263.
    9. Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
    10. Portugal-Pereira, Joana & Köberle, Alexandre C. & Soria, Rafael & Lucena, André F.P. & Szklo, Alexandre & Schaeffer, Roberto, 2016. "Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story," Energy, Elsevier, vol. 115(P2), pages 1424-1435.
    11. Wei, Xinyang & Tong, Qing & Magill, Iain & Vithayasrichareon, Peerapat & Betz, Regina, 2020. "Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector," Energy Economics, Elsevier, vol. 92(C).
    12. Claudia Kettner-Marx & Daniela Kletzan-Slamanig & Angela Köppl & Beate Littig & Irina Zielinska, 2018. "Monitoring Sustainable Development. Climate and Energy Policy Indicators," WIFO Working Papers 573, WIFO.
    13. Cao, Libin & Tang, Yiqi & Cai, Bofeng & Wu, Pengcheng & Zhang, Yansen & Zhang, Fengxue & Xin, Bo & Lv, Chen & Chen, Kai & Fang, Kai, 2021. "Was it better or worse? Simulating the environmental and health impacts of emissions trading scheme in Hubei province, China," Energy, Elsevier, vol. 217(C).
    14. Keii Gi & Fuminori Sano & Ayami Hayashi & Keigo Akimoto, 2019. "A model-based analysis on energy systems transition for climate change mitigation and ambient particulate matter 2.5 concentration reduction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 181-204, February.
    15. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    16. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    17. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    18. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    19. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    20. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:148:y:2018:i:1:d:10.1007_s10584-018-2193-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.