IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296915.html
   My bibliography  Save this article

Scenario analysis on co-benefits of air pollution control and carbon reduction in Yangtze River Delta based on STIRPAT model

Author

Listed:
  • Peijiong Feng
  • Yan Gu
  • Yaguai Yu
  • Yinzi Bao
  • Ruiyan Gao
  • Taohan Ni

Abstract

In a changing climate, it is vital to focus on the co-benefits of the pollution control and carbon emission reduction. Based on calculation of emission equivalent, the synergy coefficient is further calculated to quantitatively analyze the co-benefits of air pollution control and carbon reduction in the Yangtze River Delta; Scenario analysis in co-benefits in the Yangtze River Delta from 2026–2035 is thoroughly proposed after STIRPAT model is designed based on influencing factors confirmation including population size, economic scale, industrialization level, urbanization rate and energy intensity from measuring dimensions of synergy coefficient. The results show that the Yangtze River Delta region can partially achieve synergistic emission reduction by 2026 and realize comprehensive synergistic emission reduction of air pollution and carbon emissions not late than 2030, which provides a reference for promoting the decision-making of the new stage of long-term carbon and pollution reduction, and further, realizing carbon peak regulation and carbon neutrality.

Suggested Citation

  • Peijiong Feng & Yan Gu & Yaguai Yu & Yinzi Bao & Ruiyan Gao & Taohan Ni, 2024. "Scenario analysis on co-benefits of air pollution control and carbon reduction in Yangtze River Delta based on STIRPAT model," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-16, January.
  • Handle: RePEc:plo:pone00:0296915
    DOI: 10.1371/journal.pone.0296915
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296915
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296915&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joana Portugal-Pereira & Alexandre Koberle & André F. P. Lucena & Pedro R. R. Rochedo & Mariana Império & Ana Monteiro Carsalade & Roberto Schaeffer & Peter Rafaj, 2018. "Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil," Climatic Change, Springer, vol. 148(1), pages 293-309, May.
    2. Nam, Kyung-Min & Waugh, Caleb J. & Paltsev, Sergey & Reilly, John M. & Karplus, Valerie J., 2014. "Synergy between pollution and carbon emissions control: Comparing China and the United States," Energy Economics, Elsevier, vol. 46(C), pages 186-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Te-Ke Mai & Michael Mcaleer, 2018. "Pricing Carbon Emissions In China," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 1-37, September.
    2. Haijun Zhao & Weichun Ma & Hongjia Dong & Ping Jiang, 2017. "Analysis of Co-Effects on Air Pollutants and CO 2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants," Sustainability, MDPI, vol. 9(4), pages 1-19, March.
    3. Qian Zhou & Helmut Yabar & Takeshi Mizunoya & Yoshiro Higano, 2017. "Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    4. Cao, Chaoji & Cui, XueQin & Cai, Wenjia & Wang, Can & Xing, Lu & Zhang, Ning & Shen, Shudong & Bai, Yuqi & Deng, Zhu, 2019. "Incorporating health co-benefits into regional carbon emission reduction policy making: A case study of China’s power sector," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Ioannis Tikoudis & Walid Oueslati, 2023. "The future of transport-related emissions in dense urban areas: an analysis of various policy scenarios with MOLES," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 205-268, April.
    6. Kyungwon Park & Taeyeon Yoon & Changsub Shim & Eunjin Kang & Yongsuk Hong & Yoon Lee, 2020. "Beyond Strict Regulations to Achieve Environmental and Economic Health—An Optimal PM 2.5 Mitigation Policy for Korea," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    7. Zimmer, Anne & Koch, Nicolas, 2017. "Fuel consumption dynamics in Europe: Tax reform implications for air pollution and carbon emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 22-50.
    8. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    9. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    10. Bing Wang & Yifan Wang & Yuqing Zhao, 2021. "Collaborative Governance Mechanism of Climate Change and Air Pollution: Evidence from China," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    11. Hui Li & Xianchun Tan & Jianxin Guo & Kaiwei Zhu & Chen Huang, 2019. "Study on an Implementation Scheme of Synergistic Emission Reduction of CO 2 and Air Pollutants in China’s Steel Industry," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    12. Jian Cao & Xihui Chen & Xueping Zhang & Yanchen Gao & Xuemei Zhang & Yunwen Zhao & Xiaoli Yang & Jiayang Xu & Gengui Zhou & Jerald L. Schnoor, 2018. "Public Awareness of Remanufactured Products in Yangtze River Delta of China: Present Status, Problems and Recommendations," IJERPH, MDPI, vol. 15(6), pages 1-23, June.
    13. Hou, Mengyang & Cui, Xuehua & Chu, Liqi & Wang, He & Xi, Zenglei & Deng, Yuanjie, 2024. "Nonlinear effects of environmental regulation on PM2.5 and CO2 in China: Evidence from a quantile-on-quantile approach," Energy, Elsevier, vol. 292(C).
    14. repec:avg:wpaper:en7433 is not listed on IDEAS
    15. Chia-Lin Chang & Michael McAleer, 2019. "Modeling Latent Carbon Emission Prices for Japan: Theory and Practice," Energies, MDPI, vol. 12(21), pages 1-21, November.
    16. Danwei Zhang & Sergey Paltsev, 2016. "The Future Of Natural Gas In China: Effects Of Pricing Reform And Climate Policy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-32, November.
    17. Wei, Xinyang & Tong, Qing & Magill, Iain & Vithayasrichareon, Peerapat & Betz, Regina, 2020. "Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector," Energy Economics, Elsevier, vol. 92(C).
    18. Muryani Muryani & Khoirun Nisa’ & Miguel Angel Esquivias & Siti Hafsah Zulkarnain, 2023. "Strategies to Control Industrial Emissions: An Analytical Network Process Approach in East Java, Indonesia," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    19. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    20. Lining Wang & Han Chen & Wenying Chen, 2020. "Co-control of carbon dioxide and air pollutant emissions in China from a cost-effective perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1177-1197, October.
    21. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.