IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v147y2018i1d10.1007_s10584-017-2117-7.html
   My bibliography  Save this article

Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment

Author

Listed:
  • I. Mouratiadou

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Utrecht University)

  • M. Bevione

    (Fondazione Eni Enrico Mattei (FEEM) and Centro Euromediterraneo sui Cambiamenti Climatici (CMCC))

  • D. L. Bijl

    (Utrecht University)

  • L. Drouet

    (Fondazione Eni Enrico Mattei (FEEM) and Centro Euromediterraneo sui Cambiamenti Climatici (CMCC))

  • M. Hejazi

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory)

  • S. Mima

    (Laboratoire d’économie appliquées de Grenoble, CNRS, Grenoble INP, INRA, Univ. Grenoble-Alpes)

  • M. Pehl

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • G. Luderer

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

Abstract

This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures on the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.

Suggested Citation

  • I. Mouratiadou & M. Bevione & D. L. Bijl & L. Drouet & M. Hejazi & S. Mima & M. Pehl & G. Luderer, 2018. "Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment," Climatic Change, Springer, vol. 147(1), pages 91-106, March.
  • Handle: RePEc:spr:climat:v:147:y:2018:i:1:d:10.1007_s10584-017-2117-7
    DOI: 10.1007/s10584-017-2117-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2117-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2117-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    2. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    3. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    4. Chandel, Munish K. & Pratson, Lincoln F. & Jackson, Robert B., 2011. "The potential impacts of climate-change policy on freshwater use in thermoelectric power generation," Energy Policy, Elsevier, vol. 39(10), pages 6234-6242, October.
    5. Johannes Emmerling & Laurent Drouet & Lara Aleluia Reis & Michela Bevione & Loic Berger & Valentina Bosetti & Samuel Carrara & Enrica De Cian & Gauthier De Maere D'Aertrycke & Tom Longden & Maurizio M, 2016. "The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways," Working Papers 2016.42, Fondazione Eni Enrico Mattei.
    6. Gleick, Peter H., 1992. "Environmental consequences of hydroelectric development: The role of facility size and type," Energy, Elsevier, vol. 17(8), pages 735-747.
    7. Bijl, David L. & Bogaart, Patrick W. & Kram, Tom & de Vries, Bert J.M. & van Vuuren, Detlef P., 2016. "Long-term water demand for electricity, industry and households," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 75-86.
    8. Silvana Mima & Patrick Criqui, 2015. "The Costs of Climate Change for the European Energy System, an Assessment with the POLES Model," Post-Print hal-01149610, HAL.
    9. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    10. Christoph Bertram & Gunnar Luderer & Robert C. Pietzcker & Eva Schmid & Elmar Kriegler & Ottmar Edenhofer, 2015. "Complementing carbon prices with technology policies to keep climate targets within reach," Nature Climate Change, Nature, vol. 5(3), pages 235-239, March.
    11. Barbara Koelbl & Machteld Broek & André Faaij & Detlef Vuuren, 2014. "Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise," Climatic Change, Springer, vol. 123(3), pages 461-476, April.
    12. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    13. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    14. Sovacool, Benjamin K., 2009. "The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?," Utilities Policy, Elsevier, vol. 17(3-4), pages 288-296, September.
    15. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    16. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    3. Arbuckle, Evan J. & Binsted, Matthew & Davies, Evan G.R. & Chiappori, Diego V. & Bergero, Candelaria & Siddiqui, Muhammad-Shahid & Roney, Christopher & McJeon, Haewon C. & Zhou, Yuyu & Macaluso, Nick, 2021. "Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns?," Energy Policy, Elsevier, vol. 150(C).
    4. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    2. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    3. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    4. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    5. Carrara, Samuel, 2020. "Reactor ageing and phase-out policies: global and regional prospects for nuclear power generation," Energy Policy, Elsevier, vol. 147(C).
    6. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    7. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    8. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    9. Guivarch, Celine & Monjon, Stéphanie, 2016. "Energy security in a low-carbon world: Identifying the main uncertain drivers of energy security in Europe," Conference papers 332807, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    11. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    12. Vinca, Adriano & Rottoli, Marianna & Marangoni, Giacomo & Tavoni, Massimo, 2017. "The Role of Carbon Capture and Storage Electricity in Attaining 1.5 and 2°C," MITP: Mitigation, Innovation and Transformation Pathways 266285, Fondazione Eni Enrico Mattei (FEEM).
    13. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Matthias Weitzel, 2017. "The role of uncertainty in future costs of key CO2 abatement technologies: a sensitivity analysis with a global computable general equilibrium model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 153-173, January.
    15. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    16. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    17. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    18. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    19. Mowers, Matthew & Mignone, Bryan K. & Steinberg, Daniel C., 2023. "Quantifying value and representing competitiveness of electricity system technologies in economic models," Applied Energy, Elsevier, vol. 329(C).
    20. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:147:y:2018:i:1:d:10.1007_s10584-017-2117-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.