IDEAS home Printed from
   My bibliography  Save this article

Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?


  • Dirk Rübbelke


  • Stefan Vögele



Climate change tends to negatively affect the power sector, inter alia, by causing cooling problems in power plants and impairing the water supply required for hydropower generation. In the future, when global warming is expected to increase, autonomous adaptation to climate change via international electricity markets inducing reallocations of power generation may not be sufficient to prevent supply disruptions anymore. Furthermore, the consequent changes of supply patterns and electricity prices might cause an undesirable redistribution of wealth both between individual power suppliers and between suppliers and consumers. This study ascertains changes in European power supply patterns and electricity prices caused by on-going global warming as well as the associated redistribution of wealth for different climate change scenarios. The focus of the analysis is on short-term effects. Our results confirm that autonomous adaptation in the power sector should be complemented by planned public adaptation in order to preserve energy security and to prevent undesired distributional effects. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Dirk Rübbelke & Stefan Vögele, 2013. "Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?," Climatic Change, Springer, vol. 116(2), pages 191-206, January.
  • Handle: RePEc:spr:climat:v:116:y:2013:i:2:p:191-206
    DOI: 10.1007/s10584-012-0498-1

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 149-168.
    2. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    3. Verbruggen, Aviel, 2008. "Windfalls and other profits," Energy Policy, Elsevier, vol. 36(9), pages 3249-3251, September.
    4. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    5. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    6. Helm, Dieter, 2002. "Energy policy: security of supply, sustainability and competition," Energy Policy, Elsevier, vol. 30(3), pages 173-184, February.
    7. Kopytko, Natalie & Perkins, John, 2011. "Climate change, nuclear power, and the adaptation-mitigation dilemma," Energy Policy, Elsevier, vol. 39(1), pages 318-333, January.
    8. Seo, S. Niggol, 2011. "An analysis of public adaptation to climate change using agricultural water schemes in South America," Ecological Economics, Elsevier, vol. 70(4), pages 825-834, February.
    9. Haddad, Mohamed S., 2011. "Capacity choice and water management in hydroelectricity systems," Energy Economics, Elsevier, vol. 33(2), pages 168-177, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vögele, Stefan & Rübbelke, Dirk, 2013. "Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies," Energy, Elsevier, vol. 62(C), pages 385-392.
    2. Silvio Pereira-Cardenal & Henrik Madsen & Karsten Arnbjerg-Nielsen & Niels Riegels & Roar Jensen & Birger Mo & Ivar Wangensteen & Peter Bauer-Gottwein, 2014. "Assessing climate change impacts on the Iberian power system using a coupled water-power model," Climatic Change, Springer, vol. 126(3), pages 351-364, October.
    3. Dirk Rübbelke & Stefan Vögele, 2013. "Time and tide wait for no man: pioneers and laggards in the deployment of CCS," Working Papers 2013-13, BC3.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:116:y:2013:i:2:p:191-206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.