IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v22y2014i1p89-112.html
   My bibliography  Save this article

Individual versus overarching protection and attack of assets

Author

Listed:
  • Kjell Hausken

Abstract

Two agents protect and attack a collection of assets overarchingly versus individually. Examples of overarching protection are border security, counter intelligence, and public health measures. Both layers of protection have to be breached for an attack to be successful. We consider a simultaneous game, and a two period game with overarching contest in period 1 and individual contests in period 2 if the attacker wins period 1. With reasonable assumptions, such as contest intensities not exceeding one, the defender prefers two protection layers, while the attacker prefers one protection layer. When the unit effort costs of overarching protection and attack are equal, and the agents’ valuations for each asset are equal, in the simultaneous game defender and attacker efforts are equal in the overarching contest. In contrast, for the two period game, the defender invests more than the attacker in the overarching contest to prevent the occurrence of period 2. If the attacker nevertheless wins period 1, both agents exert larger efforts in period 2 compared with the individual contests in the simultaneous game. Framed within the Colonel Blotto literature, the attacker must win the first battlefield (overarching contest) in order to engage in the contests over the n other battlefields (individual contests). Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Kjell Hausken, 2014. "Individual versus overarching protection and attack of assets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 89-112, March.
  • Handle: RePEc:spr:cejnor:v:22:y:2014:i:1:p:89-112
    DOI: 10.1007/s10100-012-0271-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-012-0271-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-012-0271-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hausken, Kjell, 2008. "Strategic defense and attack for series and parallel reliability systems," European Journal of Operational Research, Elsevier, vol. 186(2), pages 856-881, April.
    2. Klumpp, Tilman & Polborn, Mattias K., 2006. "Primaries and the New Hampshire Effect," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1073-1114, August.
    3. Subhasish Chowdhury & Dan Kovenock & Roman Sheremeta, 2013. "An experimental investigation of Colonel Blotto games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(3), pages 833-861, April.
    4. Daniel G Arce & Rachel TA Croson & Catherine C Eckel, 2011. "Terrorism Experiments," Journal of Peace Research, Peace Research Institute Oslo, vol. 48(3), pages 373-382, May.
    5. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    6. Korczak, Edward & Levitin, Gregory, 2007. "Survivability of systems under multiple factor impact," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 269-274.
    7. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    8. Lawrence Friedman, 1958. "Game-Theory Models in the Allocation of Advertising Expenditures," Operations Research, INFORMS, vol. 6(5), pages 699-709, October.
    9. Avenhaus, Rudolf & Canty, Morton John, 2005. "Playing for time: A sequential inspection game," European Journal of Operational Research, Elsevier, vol. 167(2), pages 475-492, December.
    10. Derek J. Clark & Kai A. Konrad, 2008. "Fragmented Property Rights and Incentives for R& D," Management Science, INFORMS, vol. 54(5), pages 969-981, May.
    11. Konrad, Kai A. & Kovenock, Dan, 2009. "Multi-battle contests," Games and Economic Behavior, Elsevier, vol. 66(1), pages 256-274, May.
    12. Brian Roberson, 2006. "The Colonel Blotto game," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 1-24, September.
    13. Kai A. Konrad & Dan Kovenock, 2010. "Contests With Stochastic Abilities," Economic Inquiry, Western Economic Association International, vol. 48(1), pages 89-103, January.
    14. Dan Kovenock & Brian Roberson, 2018. "The Optimal Defense Of Networks Of Targets," Economic Inquiry, Western Economic Association International, vol. 56(4), pages 2195-2211, October.
    15. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    16. Powell, Robert, 2007. "Defending against Terrorist Attacks with Limited Resources," American Political Science Review, Cambridge University Press, vol. 101(3), pages 527-541, August.
    17. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    18. Alex Robson, 2005. "Multi-Item Contests," ANU Working Papers in Economics and Econometrics 2005-446, Australian National University, College of Business and Economics, School of Economics.
    19. Laura McLay & Jamie Lloyd & Emily Niman, 2011. "Interdicting nuclear material on cargo containers using knapsack problem models," Annals of Operations Research, Springer, vol. 187(1), pages 185-205, July.
    20. Vicki Bier & Naraphorn Haphuriwat, 2011. "Analytical method to identify the number of containers to inspect at U.S. ports to deter terrorist attacks," Annals of Operations Research, Springer, vol. 187(1), pages 137-158, July.
    21. Snyder, James M, 1989. "Election Goals and the Allocation of Campaign Resources," Econometrica, Econometric Society, vol. 57(3), pages 637-660, May.
    22. G Levitin & K Hausken, 2012. "Individual versus overarching protection against strategic attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 969-981, July.
    23. Haphuriwat, N. & Bier, V.M., 2011. "Trade-offs between target hardening and overarching protection," European Journal of Operational Research, Elsevier, vol. 213(1), pages 320-328, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    2. Subhasish M Chowdhury & Dan Kovenock & David Rojo Arjona & Nathaniel T Wilcox, 2021. "Focality and Asymmetry in Multi-Battle Contests," The Economic Journal, Royal Economic Society, vol. 131(636), pages 1593-1619.
    3. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    5. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    6. Ríos Insua, David & Cano, Javier & Pellot, Michael & Ortega, Ricardo, 2016. "Multithreat multisite protection: A security case study," European Journal of Operational Research, Elsevier, vol. 252(3), pages 888-899.
    7. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    8. Ouyang, Min & Xu, Min & Zhang, Chi & Huang, Shitong, 2017. "Mitigating electric power system vulnerability to worst-case spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 144-154.
    9. Abdolmajid Yolmeh & Melike Baykal-Gürsoy & Vicki Bier, 2023. "A decomposable resource allocation model with generalized overarching protections," Annals of Operations Research, Springer, vol. 320(1), pages 493-507, January.
    10. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    11. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    2. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    3. Subhasish Chowdhury & Dan Kovenock & Roman Sheremeta, 2013. "An experimental investigation of Colonel Blotto games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(3), pages 833-861, April.
    4. Shakun D. Mago & Roman M. Sheremeta, 2019. "New Hampshire Effect: behavior in sequential and simultaneous multi-battle contests," Experimental Economics, Springer;Economic Science Association, vol. 22(2), pages 325-349, June.
    5. Duffy, John & Matros, Alexander, 2017. "Stochastic asymmetric Blotto games: An experimental study," Journal of Economic Behavior & Organization, Elsevier, vol. 139(C), pages 88-105.
    6. Zeynep B. Irfanoglu & Shakun D. Mago & Roman M. Sheremeta, 2014. "The New Hampshire Effect: Behavior in Sequential and Simultaneous Election Contests," Working Papers 14-15, Chapman University, Economic Science Institute.
    7. Dan Kovenock & Brian Roberson, 2018. "The Optimal Defense Of Networks Of Targets," Economic Inquiry, Western Economic Association International, vol. 56(4), pages 2195-2211, October.
    8. Dan Kovenock & Brian Roberson & Roman M. Sheremeta, 2019. "The attack and defense of weakest-link networks," Public Choice, Springer, vol. 179(3), pages 175-194, June.
    9. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    10. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    11. David Rietzke & Brian Roberson, 2013. "The robustness of ‘enemy-of-my-enemy-is-my-friend’ alliances," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 937-956, April.
    12. Subhasish M Chowdhury & Dan Kovenock & David Rojo Arjona & Nathaniel T Wilcox, 2021. "Focality and Asymmetry in Multi-Battle Contests," The Economic Journal, Royal Economic Society, vol. 131(636), pages 1593-1619.
    13. Kimbrough, Erik O. & Laughren, Kevin & Sheremeta, Roman, 2020. "War and conflict in economics: Theories, applications, and recent trends," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 998-1013.
    14. John Duffy & Alexander Matros, 2013. "Stochastic Asymmetric Blotto Games: Theory and Experimental Evidence," Working Paper 509, Department of Economics, University of Pittsburgh, revised Nov 2013.
    15. Konrad, Kai A., 2007. "Strategy in contests: an introduction [Strategie in Turnieren – eine Einführung]," Discussion Papers, Research Unit: Market Processes and Governance SP II 2007-01, WZB Berlin Social Science Center.
    16. Sudipta Sarangi & Dan Kovenock & Matt Wiser, 2012. "All-Pay Hex: A Multibattle Contest With Complementarities," Departmental Working Papers 2012-06, Department of Economics, Louisiana State University.
    17. Dan Kovenock & Sudipta Sarangi & Matt Wiser, 2015. "All-pay 2 $$\times $$ × 2 Hex: a multibattle contest with complementarities," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 571-597, August.
    18. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2014. "Optimal defense with variable number of overarching and individual protections," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 81-90.
    19. Emmanuel Dechenaux & Dan Kovenock & Roman Sheremeta, 2015. "A survey of experimental research on contests, all-pay auctions and tournaments," Experimental Economics, Springer;Economic Science Association, vol. 18(4), pages 609-669, December.
    20. Doğan, Serhat & Karagözoğlu, Emin & Keskin, Kerim & Sağlam, Çağrı, 2018. "Multi-player race," Journal of Economic Behavior & Organization, Elsevier, vol. 149(C), pages 123-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:22:y:2014:i:1:p:89-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.