IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v320y2023i1d10.1007_s10479-022-05064-w.html
   My bibliography  Save this article

A decomposable resource allocation model with generalized overarching protections

Author

Listed:
  • Abdolmajid Yolmeh

    (UPS)

  • Melike Baykal-Gürsoy

    (Rutgers University)

  • Vicki Bier

    (University of Wisconsin–Madison)

Abstract

This paper considers a defensive resource allocation problem in which a defender protects a set of assets either individually or collectively using overarching protections. An overarching protection refers to an option that protects multiple assets at the same time, e.g., emergency response, border security and counter intelligence. Most of the defensive resource allocation models with overarching protections assume that there is only one option that protects all targets. However, this may not be realistic considering that, for example, emergency response investment may cover only a certain region. In this paper, we develop a new resource allocation model to accommodate generalized overarching protections against intentional attacks. The model also considers multiple natural disaster types. We show that the proposed optimization model is a convex optimization problem and therefore can be solved to optimality in polynomial time. Furthermore, the overall country-level resource allocation problem can be decomposed into smaller city-level subproblems, thus resulting in a more efficient algorithm. The numerical experiments demonstrate the performance of the proposed approach.

Suggested Citation

  • Abdolmajid Yolmeh & Melike Baykal-Gürsoy & Vicki Bier, 2023. "A decomposable resource allocation model with generalized overarching protections," Annals of Operations Research, Springer, vol. 320(1), pages 493-507, January.
  • Handle: RePEc:spr:annopr:v:320:y:2023:i:1:d:10.1007_s10479-022-05064-w
    DOI: 10.1007/s10479-022-05064-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05064-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05064-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Wang & Vicki M. Bier, 2011. "Target-Hardening Decisions Based on Uncertain Multiattribute Terrorist Utility," Decision Analysis, INFORMS, vol. 8(4), pages 286-302, December.
    2. Vicki M. Bier & Naraphorn Haphuriwat & Jaime Menoyo & Rae Zimmerman & Alison M. Culpen, 2008. "Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 763-770, June.
    3. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    4. Kjell Hausken, 2014. "Individual versus overarching protection and attack of assets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 89-112, March.
    5. Daniel Seaberg & Laura Devine & Jun Zhuang, 2017. "A review of game theory applications in natural disaster management research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1461-1483, December.
    6. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    7. G Levitin & K Hausken, 2012. "Individual versus overarching protection against strategic attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 969-981, July.
    8. Haphuriwat, N. & Bier, V.M., 2011. "Trade-offs between target hardening and overarching protection," European Journal of Operational Research, Elsevier, vol. 213(1), pages 320-328, August.
    9. Powell, Robert, 2007. "Defending against Terrorist Attacks with Limited Resources," American Political Science Review, Cambridge University Press, vol. 101(3), pages 527-541, August.
    10. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    11. Kjell Hausken, 2013. "Combined Series And Parallel Systems Subject To Individual Versus Overarching Defense And Attack," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 30(02), pages 1-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    2. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    3. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    4. Kjell Hausken, 2014. "Individual versus overarching protection and attack of assets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 89-112, March.
    5. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    6. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    8. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    9. Ríos Insua, David & Cano, Javier & Pellot, Michael & Ortega, Ricardo, 2016. "Multithreat multisite protection: A security case study," European Journal of Operational Research, Elsevier, vol. 252(3), pages 888-899.
    10. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2019. "Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions," Decision Analysis, INFORMS, vol. 16(1), pages 46-66, March.
    11. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    12. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    13. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    14. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2014. "Optimal defense with variable number of overarching and individual protections," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 81-90.
    15. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    16. Chen Wang & Vicki M. Bier, 2016. "Quantifying Adversary Capabilities to Inform Defensive Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 756-775, April.
    17. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    18. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Zhiheng Xu & Jun Zhuang, 2019. "A Study on a Sequential One‐Defender‐N‐Attacker Game," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1414-1432, June.
    20. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:320:y:2023:i:1:d:10.1007_s10479-022-05064-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.