IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v213y2011i1p320-328.html

Trade-offs between target hardening and overarching protection

Author

Listed:
  • Haphuriwat, N.
  • Bier, V.M.

Abstract

Defenders concerned about protecting multiple targets can either protect them individually (through target hardening), or collectively (through overarching protections such as border security, public health, emergency response, or intelligence). Decision makers may find it relatively straightforward to choose which targets to harden, but are likely to find it more difficult to compare seemingly incommensurate forms of protection - e.g., target hardening, versus a reduction in the likelihood of weapons being smuggled across the border. Unfortunately, little previous research has addressed this question, and fundamental research is needed to provide guidance and practical solution approaches. In this paper, we first develop a model to optimally allocate resources between target hardening and overarching protection, then investigate the factors affecting the relative desirability of target hardening versus overarching protection, and finally apply our model to a case study involving critical assets in Wisconsin. The case study demonstrates the value of our method by showing that the optimal solution obtained using our model is in some cases substantially better than the historical budget allocation.

Suggested Citation

  • Haphuriwat, N. & Bier, V.M., 2011. "Trade-offs between target hardening and overarching protection," European Journal of Operational Research, Elsevier, vol. 213(1), pages 320-328, August.
  • Handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:320-328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00272-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Edwards, Ward & Barron, F. Hutton, 1994. "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement," Organizational Behavior and Human Decision Processes, Elsevier, vol. 60(3), pages 306-325, December.
    2. Cooke, Roger M. & Nauta, Maarten & Havelaar, Arie H. & van der Fels, Ine, 2006. "Probabilistic inversion for chicken processing lines," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1364-1372.
    3. Vicki Bier & Santiago Oliveros & Larry Samuelson, 2007. "Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(4), pages 563-587, August.
    4. Golany, Boaz & Kaplan, Edward H. & Marmur, Abraham & Rothblum, Uriel G., 2009. "Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 198-208, January.
    5. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    6. Nitin Bakshi & Stephen E. Flynn & Noah Gans, 2011. "Estimating the Operational Impact of Container Inspections at International Ports," Management Science, INFORMS, vol. 57(1), pages 1-20, January.
    7. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    8. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    9. Powell, Robert, 2007. "Defending against Terrorist Attacks with Limited Resources," American Political Science Review, Cambridge University Press, vol. 101(3), pages 527-541, August.
    10. Zhuang, Jun & Bier, Vicki M. & Alagoz, Oguzhan, 2010. "Modeling secrecy and deception in a multiple-period attacker-defender signaling game," European Journal of Operational Research, Elsevier, vol. 203(2), pages 409-418, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    2. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    3. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    4. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    5. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    6. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    7. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    8. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    9. Andrew Samuel & Seth D. Guikema, 2012. "Resource Allocation for Homeland Defense: Dealing with the Team Effect," Decision Analysis, INFORMS, vol. 9(3), pages 238-252, September.
    10. Niyazi Bakır, 2011. "A Stackelberg game model for resource allocation in cargo container security," Annals of Operations Research, Springer, vol. 187(1), pages 5-22, July.
    11. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    12. Wang, Xiaofang & Zhuang, Jun, 2011. "Balancing congestion and security in the presence of strategic applicants with private information," European Journal of Operational Research, Elsevier, vol. 212(1), pages 100-111, July.
    13. Kjell Hausken, 2014. "Choosing what to protect when attacker resources and asset valuations are uncertain," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(3), pages 23-44.
    14. Chen Wang & Vicki M. Bier, 2011. "Target-Hardening Decisions Based on Uncertain Multiattribute Terrorist Utility," Decision Analysis, INFORMS, vol. 8(4), pages 286-302, December.
    15. Mohammad Ebrahim Nikoofal & Morteza Pourakbar & Mehmet Gumus, 2023. "Securing containerized supply chain through public and private partnership," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2341-2361, July.
    16. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    17. Jenelius, Erik & Westin, Jonas & Holmgren, Åke J., 2010. "Critical infrastructure protection under imperfect attacker perception," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(1), pages 16-26.
    18. Timothy Mathews & Anton D. Lowenberg, 2012. "The Interdependence Between Homeland Security Efforts of a State and a Terrorist’s Choice of Attack," Conflict Management and Peace Science, Peace Science Society (International), vol. 29(2), pages 195-218, April.
    19. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    20. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:320-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.