IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-022-04934-7.html
   My bibliography  Save this article

Viable healthcare supply chain network design for a pandemic

Author

Listed:
  • Mehdi Alizadeh

    (Iran University of Science and Technology)

  • Mir Saman Pishvaee

    (Iran University of Science and Technology)

  • Hamed Jahani

    (RMIT University)

  • Mohammad Mahdi Paydar

    (Babol Noshirvani University of Technology)

  • Ahmad Makui

    (Iran University of Science and Technology)

Abstract

The recent COVID-19 pandemic revealed that healthcare networks must have a flexible and effective structure. In this study, we develop a viable healthcare network design for a pandemic using a multi-stage stochastic approach. We propose a multi-level network that includes health centers, computed tomography scan centers, hospitals, and clinics. Patients have conditions to returning to normal life or quarantining at home. Three objectives are defined: maximizing the probability of patient recovery, minimizing the costs of all centers in the network, and minimizing the Coronavirus death rate. We investigate a real case study in Iran to demonstrate the model’s applicability. Finally, we compare the healthcare supply chain network design in a pandemic with a normal situation to advise how the network can continue to remain viable.

Suggested Citation

  • Mehdi Alizadeh & Mir Saman Pishvaee & Hamed Jahani & Mohammad Mahdi Paydar & Ahmad Makui, 2023. "Viable healthcare supply chain network design for a pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 35-73, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04934-7
    DOI: 10.1007/s10479-022-04934-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04934-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04934-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhavana Mathur & Sumit Gupta & Makhan Lal Meena & G.S. Dangayach, 2018. "Healthcare supply chain management: literature review and some issues," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 15(3), pages 265-287, April.
    2. Anna Nagurney & Mojtaba Salarpour & June Dong & Pritha Dutta, 2021. "Competition for Medical Supplies Under Stochastic Demand in the Covid-19 Pandemic: A Generalized Nash Equilibrium Framework," Springer Optimization and Its Applications, in: Themistocles M. Rassias & Panos M. Pardalos (ed.), Nonlinear Analysis and Global Optimization, pages 331-356, Springer.
    3. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    4. Hamed Jahani & Babak Abbasi & Zahra Hosseinifard & Masih Fadaki & James P. Minas, 2021. "Disruption risk management in service-level agreements," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 226-244, January.
    5. Bhavana Mathur & Sumit Gupta & Makhan Lal Meena & G.S. Dangayach, 2018. "Healthcare supply chain management: literature review and some issues," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 15(3), pages 265-287, April.
    6. B. James Deaton & Brady J. Deaton, 2020. "Food security and Canada's agricultural system challenged by COVID‐19," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 143-149, June.
    7. Christine S.M. Currie & John W. Fowler & Kathy Kotiadis & Thomas Monks & Bhakti Stephan Onggo & Duncan A. Robertson & Antuela A. Tako, 2020. "How simulation modelling can help reduce the impact of COVID-19," Journal of Simulation, Taylor & Francis Journals, vol. 14(2), pages 83-97, April.
    8. Richard S. Gray, 2020. "Agriculture, transportation, and the COVID‐19 crisis," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 239-243, June.
    9. Alexander Trautrims & Martin C. Schleper & M. Selim Cakir & Stefan Gold, 2020. "Survival at the expense of the weakest? Managing modern slavery risks in supply chains during COVID-19," Journal of Risk Research, Taylor & Francis Journals, vol. 23(7-8), pages 1067-1072, August.
    10. Nagurney, Anna, 2021. "Optimization of supply chain networks with inclusion of labor: Applications to COVID-19 pandemic disruptions," International Journal of Production Economics, Elsevier, vol. 235(C).
    11. Chiaramonti, David & Maniatis, Kyriakos, 2020. "Security of supply, strategic storage and Covid19: Which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport?," Applied Energy, Elsevier, vol. 271(C).
    12. David Swanson & Luis Santamaria, 2021. "Pandemic Supply Chain Research: A Structured Literature Review and Bibliometric Network Analysis," Logistics, MDPI, vol. 5(1), pages 1-22, January.
    13. Kashanian, Motahareh & Pishvaee, Mir Saman & Sahebi, Hadi, 2020. "Sustainable biomass portfolio sourcing plan using multi-stage stochastic programming," Energy, Elsevier, vol. 204(C).
    14. Masoud Alinezhad & Iraj Mahdavi & Milad Hematian & Erfan Babaee Tirkolaee, 2022. "A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8779-8806, June.
    15. Lily Poursoltan & Seyed-Mohammad Seyed-Hosseini & Armin Jabbarzadeh, 2021. "Green Closed-Loop Supply Chain Network under the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    16. Riccardo Aldrighetti & Ilenia Zennaro & Serena Finco & Daria Battini, 2019. "Healthcare Supply Chain Simulation with Disruption Considerations: A Case Study from Northern Italy," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(1), pages 81-102, December.
    17. Milan Zeleny, 1976. "The Attribute-Dynamic Attitude Model (Adam)," Management Science, INFORMS, vol. 23(1), pages 12-26, September.
    18. Dmitry Ivanov & Ajay Das, 2020. "Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 13(1), pages 90-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    2. Ardekani, Zahra Fozouni & Sobhani, Seyed Mohammad Javad & Barbosa, Marcelo Werneck & de Sousa, Paulo Renato, 2023. "Transition to a sustainable food supply chain during disruptions: A study on the Brazilian food companies in the Covid-19 era," International Journal of Production Economics, Elsevier, vol. 257(C).
    3. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    4. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    5. Samia Zaoui & Clovis Foguem & Dieudonné Tchuente & Samuel Fosso-Wamba & Bernard Kamsu-Foguem, 2023. "The Viability of Supply Chains with Interpretable Learning Systems: The Case of COVID-19 Vaccine Deliveries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 633-657, December.
    6. Balezentis, Tomas & Zickiene, Agne & Volkov, Artiom & Streimikiene, Dalia & Morkunas, Mangirdas & Dabkiene, Vida & Ribasauskiene, Erika, 2023. "Measures for the viable agri-food supply chains: A multi-criteria approach," Journal of Business Research, Elsevier, vol. 155(PA).
    7. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    8. Kedwadee Sombultawee & Pattama Lenuwat & Natdanai Aleenajitpong & Sakun Boon-itt, 2022. "COVID-19 and Supply Chain Management: A Review with Bibliometric," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    9. Gheorghe Cristian Popescu & Monica Popescu, 2022. "COVID-19 pandemic and agriculture in Romania: effects on agricultural systems, compliance with restrictions and relations with authorities," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(2), pages 557-567, April.
    10. Georgia Fargetta & Antonino Maugeri & Laura Scrimali, 2022. "A Stochastic Nash Equilibrium Problem for Medical Supply Competition," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 354-380, June.
    11. Margarida Rodrigues & Mário Franco & Rui Silva, 2020. "COVID-19 and Disruption in Management and Education Academics: Bibliometric Mapping and Analysis," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    12. Rudiah Md Hanafiah & Nur Hazwani Karim & Noorul Shaiful Fitri Abdul Rahman & Saharuddin Abdul Hamid & Ahmed Maher Mohammed, 2022. "An Innovative Risk Matrix Model for Warehousing Productivity Performance," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    13. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    14. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Cariappa, AG Adeeth & Acharya, Kamlesh Kumar & Adhav, Chaitanya Ashok & R, Sendhil & Ramasundaram, P. & Kumar, Anuj & Singh, Satyavir & Singh, Gyanendra Pratap, 2022. "COVID-19 induced lockdown effect on wheat supply chain and prices in India – Insights from state interventions led resilience," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Ozdemir, Dilek & Sharma, Mahak & Dhir, Amandeep & Daim, Tugrul, 2022. "Supply chain resilience during the COVID-19 pandemic," Technology in Society, Elsevier, vol. 68(C).
    17. Shaju George & Safaa Elrashid, 2023. "Inventory Management and Pharmaceutical Supply Chain Performance of Hospital Pharmacies in Bahrain: A Structural Equation Modeling Approach," SAGE Open, , vol. 13(1), pages 21582440221, January.
    18. Junaid, Muhammad & Zhang, Qingyu & Cao, Mei & Luqman, Adeel, 2023. "Nexus between technology enabled supply chain dynamic capabilities, integration, resilience, and sustainable performance: An empirical examination of healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Tomas Baležentis & Mangirdas Morkūnas & Agnė Žičkienė & Artiom Volkov & Erika Ribašauskienė & Dalia Štreimikienė, 2021. "Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    20. Ramani, Vinay & Ghosh, Debabrata & Sodhi, ManMohan S., 2022. "Understanding systemic disruption from the Covid-19-induced semiconductor shortage for the auto industry," Omega, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04934-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.