IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v292y2020i2d10.1007_s10479-020-03580-1.html
   My bibliography  Save this article

Balancing supply and demand in the presence of renewable generation via demand response for electric water heaters

Author

Listed:
  • Adham I. Tammam

    (Polytechnique Montreal)

  • Miguel F. Anjos

    (Polytechnique Montreal
    University of Edinburgh)

  • Michel Gendreau

    (Polytechnique Montreal)

Abstract

With the increasing presence of renewable energy sources in the electrical power grid, demand response via thermostatic appliances such as electric water heaters is a promising way to compensate for the significant variability in renewable power generation. We propose a multistage stochastic optimization model that computes the optimal day-ahead target profile of the mean thermal energy contained in a large population of heaters, given various possible wind power production and uncontrollable load scenarios. This optimal profile is calculated to make the variable net demand as even as possible.

Suggested Citation

  • Adham I. Tammam & Miguel F. Anjos & Michel Gendreau, 2020. "Balancing supply and demand in the presence of renewable generation via demand response for electric water heaters," Annals of Operations Research, Springer, vol. 292(2), pages 753-770, September.
  • Handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-020-03580-1
    DOI: 10.1007/s10479-020-03580-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03580-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03580-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malandra, F. & Kizilkale, A.C. & Sirois, F. & Sansò, B. & Anjos, M.F. & Bernier, M. & Gendreau, M. & Malhamé, R.P., 2020. "Smart Distributed Energy Storage Controller (smartDESC)," Energy, Elsevier, vol. 210(C).
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Pied, Marie & Anjos, Miguel F. & Malhamé, Roland P., 2020. "A flexibility product for electric water heater aggregators on electricity markets," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Jalalimajidi & SM Seyedhosseini & Ahmad Makui & Masoud Babakhani, 2018. "Developing a comprehensive model for new energy replacement in the country’s development program using a robust optimization approach," Energy & Environment, , vol. 29(6), pages 868-890, September.
    2. Liu, Kun & Gao, Feng, 2017. "Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power," Renewable Energy, Elsevier, vol. 113(C), pages 1-10.
    3. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    4. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    5. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    6. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    7. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    8. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    9. Allen M. Wang & Alessandro Pau & Cristina Rea & Oswin So & Charles Dawson & Olivier Sauter & Mark D. Boyer & Anna Vu & Cristian Galperti & Chuchu Fan & Antoine Merle & Yoeri Poels & Cristina Venturini, 2025. "Learning plasma dynamics and robust rampdown trajectories with predict-first experiments at TCV," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    11. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    12. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    13. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    14. Rupendra Yadav & Aparna Mehra, 2025. "Robust MCVaR Portfolio Optimization with Ellipsoidal Support and Reproducing Kernel Hilbert Space-based Uncertainty," Papers 2509.00447, arXiv.org.
    15. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    16. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    17. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    18. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    19. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    20. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-020-03580-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.