IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i6p868-890.html
   My bibliography  Save this article

Developing a comprehensive model for new energy replacement in the country’s development program using a robust optimization approach

Author

Listed:
  • Mohsen Jalalimajidi
  • SM Seyedhosseini
  • Ahmad Makui
  • Masoud Babakhani

Abstract

Iran has numerous capabilities in producing new and renewable energies due to its geographical location. This stresses a robust optimization pattern to develop the use of renewable energies. The main aim of this study is to develop a comprehensive pattern for energy in two scenarios: maintenance of status quo or transition to replaceable energies by applying energy replacement modeling in Iran. Therefore, a set of basic and structural issues, required area for energy and environmental location, were investigated to arrange an appropriate strategic framework for new energy development. Following energy system modeling by benchmarking against the world’s optimized systems of energy, strategic program of energy has been done through a review of the present situation of energy of Iran. To replace the fossil fuels by renewable energies, a robust optimization model was designed and the replacement optimization routes for new energies to replace fossil fuels were put into scenarios in a period of time in Iran. Implementing and developing a comprehensive model for energy and using simulation for validation and adaptation of the obtained results, some scenarios were offered for the renewable energy transitions. Evaluating the results of the findings suggests broad concepts of energy. Development might be observed in the results of models. The result of this study depicts that Iran owns a large number of potentials to use new energies. The long-term optimization pattern of results proposes 15% of electricity is taken from solar energy in the 1404.

Suggested Citation

  • Mohsen Jalalimajidi & SM Seyedhosseini & Ahmad Makui & Masoud Babakhani, 2018. "Developing a comprehensive model for new energy replacement in the country’s development program using a robust optimization approach," Energy & Environment, , vol. 29(6), pages 868-890, September.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:6:p:868-890
    DOI: 10.1177/0958305X18758635
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18758635
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18758635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    3. Kleijnen, J. P. C., 2001. "Ethical issues in modeling: Some reflections," European Journal of Operational Research, Elsevier, vol. 130(1), pages 223-230, April.
    4. Kleijnen, J.P.C., 2001. "Ethical issues in modeling : Some reflections," Other publications TiSEM 9da35476-71ca-4696-94f7-0, Tilburg University, School of Economics and Management.
    5. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    6. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    7. Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
    8. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    9. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    10. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
    11. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    2. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    3. Roya Soltani & Seyed J Sadjadi, 2014. "Reliability optimization through robust redundancy allocation models with choice of component type under fuzziness," Journal of Risk and Reliability, , vol. 228(5), pages 449-459, October.
    4. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    5. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    6. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    7. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    8. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    9. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    10. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    11. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    12. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    13. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    14. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    15. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Jan Kwakkel & Marjolijn Haasnoot & Warren Walker, 2015. "Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world," Climatic Change, Springer, vol. 132(3), pages 373-386, October.
    17. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    18. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    19. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    20. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:6:p:868-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.