IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.00447.html
   My bibliography  Save this paper

Robust MCVaR Portfolio Optimization with Ellipsoidal Support and Reproducing Kernel Hilbert Space-based Uncertainty

Author

Listed:
  • Rupendra Yadav
  • Aparna Mehra

Abstract

This study introduces a portfolio optimization framework to minimize mixed conditional value at risk (MCVaR), incorporating a chance constraint on expected returns and limiting the number of assets via cardinality constraints. A robust MCVaR model is presented, which presumes ellipsoidal support for random returns without assuming any distribution. The model utilizes an uncertainty set grounded in a reproducing kernel Hilbert space (RKHS) to manage the chance constraint, resulting in a simplified second-order cone programming (SOCP) formulation. The performance of the robust model is tested on datasets from six distinct financial markets. The outcomes of comprehensive experiments indicate that the robust model surpasses the nominal model, market portfolio, and equal-weight portfolio with higher expected returns, lower risk metrics, enhanced reward-risk ratios, and a better value of Jensen's alpha in many cases. Furthermore, we aim to validate the robust models in different market phases (bullish, bearish, and neutral). The robust model shows a distinct advantage in bear markets, providing better risk protection against adverse conditions. In contrast, its performance in bullish and neutral phases is somewhat similar to that of the nominal model. The robust model appears effective in volatile markets, although further research is necessary to comprehend its performance across different market conditions.

Suggested Citation

  • Rupendra Yadav & Aparna Mehra, 2025. "Robust MCVaR Portfolio Optimization with Ellipsoidal Support and Reproducing Kernel Hilbert Space-based Uncertainty," Papers 2509.00447, arXiv.org.
  • Handle: RePEc:arx:papers:2509.00447
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.00447
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.00447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.