IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i3p650-670.html
   My bibliography  Save this article

An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints

Author

Listed:
  • P. Bonami

    (Laboratoire d'Informatique Fondamentale de Marseille, Université de la Méditérranée, Marseille, France)

  • M. A. Lejeune

    (Decision Sciences Department, The George Washington University, Washington, DC 20052)

Abstract

In this paper, we study extensions of the classical Markowitz mean-variance portfolio optimization model. First, we consider that the expected asset returns are stochastic by introducing a probabilistic constraint, which imposes that the expected return of the constructed portfolio must exceed a prescribed return threshold with a high confidence level. We study the deterministic equivalents of these models. In particular, we define under which types of probability distributions the deterministic equivalents are second-order cone programs and give closed-form formulations. Second, we account for real-world trading constraints (such as the need to diversify the investments in a number of industrial sectors, the nonprofitability of holding small positions, and the constraint of buying stocks by lots) modeled with integer variables. To solve the resulting problems, we propose an exact solution approach in which the uncertainty in the estimate of the expected returns and the integer trading restrictions are simultaneously considered. The proposed algorithmic approach rests on a nonlinear branch-and-bound algorithm that features two new branching rules. The first one is a static rule, called idiosyncratic risk branching , while the second one is dynamic and is called portfolio risk branching . The two branching rules are implemented and tested using the open-source Bonmin framework. The comparison of the computational results obtained with state-of-the-art MINLP solvers ( MINLP_BB and CPLEX ) and with our approach shows the effectiveness of the latter, which permits to solve to optimality problems with up to 200 assets in a reasonable amount of time. The practicality of the approach is illustrated through its use for the construction of four fund-of-funds now available on the major trading markets.

Suggested Citation

  • P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:3:p:650-670
    DOI: 10.1287/opre.1080.0599
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0599
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues Part II — Processing of portfolio planning models with discrete constraints," Journal of Asset Management, Palgrave Macmillan, vol. 8(4), pages 249-258, November.
    2. Corazza, Marco & Favaretto, Daniela, 2007. "On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1947-1960, February.
    3. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    4. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    5. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    6. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    7. Hans Kellerer & Renata Mansini & M. Speranza, 2000. "Selecting Portfolios with Fixed Costs and Minimum Transaction Lots," Annals of Operations Research, Springer, vol. 99(1), pages 287-304, December.
    8. Duan Li & Xiaoling Sun & Jun Wang, 2006. "Optimal Lot Solution To Cardinality Constrained Mean–Variance Formulation For Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 83-101, January.
    9. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    10. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. Juan Pablo Vielma & Shabbir Ahmed & George L. Nemhauser, 2008. "A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 438-450, August.
    13. Peter Byrne & Stephen Lee, 2004. "Different Risk Measures: Different Portfolio Compositions?," ERES eres2004_516, European Real Estate Society (ERES).
    14. Costa, O. L. V. & Paiva, A. C., 2002. "Robust portfolio selection using linear-matrix inequalities," Journal of Economic Dynamics and Control, Elsevier, vol. 26(6), pages 889-909, June.
    15. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    16. Peter Byrne & Stephen Lee, 2004. "Different Risk Measures: Different Portfolio Compositions?," Real Estate & Planning Working Papers rep-wp2004-03, Henley Business School, University of Reading.
    17. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    18. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    19. C. van de Panne & W. Popp, 1963. "Minimum-Cost Cattle Feed Under Probabilistic Protein Constraints," Management Science, INFORMS, vol. 9(3), pages 405-430, April.
    20. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    21. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    22. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    23. Charles D. Feinstein & Mukund N. Thapa, 1993. "Notes: A Reformulation of a Mean-Absolute Deviation Portfolio Optimization Model," Management Science, INFORMS, vol. 39(12), pages 1552-1553, December.
    24. Hiroshi Konno & Rei Yamamoto, 2005. "Integer programming approaches in mean-risk models," Computational Management Science, Springer, vol. 4(4), pages 339-351, November.
    25. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    26. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues," Journal of Asset Management, Palgrave Macmillan, vol. 8(3), pages 200-214, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    2. Jongbin Jung & Seongmoon Kim, 2017. "Developing a dynamic portfolio selection model with a self-adjusted rebalancing method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 766-779, July.
    3. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    4. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    6. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    7. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    8. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    9. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    10. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    11. Khodamoradi, T. & Salahi, M. & Najafi, A.R., 2020. "Robust CCMV model with short selling and risk-neutral interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    12. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    13. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    14. Lotfi, Somayyeh & Zeniosn, Stravros A., 2016. "Equivalence of Robust VaR and CVaR Optimization," Working Papers 16-03, University of Pennsylvania, Wharton School, Weiss Center.
    15. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    16. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    17. Nasim Dehghan Hardoroudi & Abolfazl Keshvari & Markku Kallio & Pekka Korhonen, 2017. "Solving cardinality constrained mean-variance portfolio problems via MILP," Annals of Operations Research, Springer, vol. 254(1), pages 47-59, July.
    18. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    19. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    20. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:3:p:650-670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.