IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1489-1511.html
   My bibliography  Save this article

A Scalable Algorithm for Sparse Portfolio Selection

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • Ryan Cory-Wright

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

Abstract

The sparse portfolio selection problem is one of the most famous and frequently studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities, and minimum investment constraints. Existing certifiably optimal approaches to this problem have not been shown to converge within a practical amount of time at real-world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic that supplies high-quality warm-starts, and a second heuristic for generating additional cuts that strengthens the root relaxation. We also study the problem’s continuous relaxation, establish that it is second-order cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that a conjunction of the imposition of ridge regularization and the use of the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems. Summary of Contribution: This paper proposes a new decomposition scheme for tackling the problem of sparse portfolio selection: the problem of selecting a limited number of securities in a portfolio. This is a challenging problem to solve in high dimensions, as it belongs to the class of mixed-integer, nonseparable nonlinear optimization problems. We propose a new Benders-type cutting plane method and demonstrate its efficacy on a wide set of both synthetic and real-world problems, including problems with thousands of securities. Our approach also provides insights for other mixed-integer optimization problems with logical constraints.

Suggested Citation

  • Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1489-1511
    DOI: 10.1287/ijoc.2021.1127
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1127
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    2. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    3. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    4. Juan Pablo Vielma & Shabbir Ahmed & George L. Nemhauser, 2008. "A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 438-450, August.
    5. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    7. X. Cui & X. Zheng & S. Zhu & X. Sun, 2013. "Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1409-1423, August.
    8. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    9. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    10. Antonio Frangioni & Fabio Furini & Claudio Gentile, 2016. "Approximated perspective relaxations: a project and lift approach," Computational Optimization and Applications, Springer, vol. 63(3), pages 705-735, April.
    11. Jacob, Nancy L, 1974. "A Limited-Diversification Portfolio Selection Model for the Small Investor," Journal of Finance, American Finance Association, vol. 29(3), pages 847-856, June.
    12. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    2. Hu Tian & Xiaolong Zheng & Kang Zhao & Maggie Wenjing Liu & Daniel Dajun Zeng, 2022. "Inductive Representation Learning on Dynamic Stock Co-Movement Graphs for Stock Predictions," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1940-1957, July.
    3. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    4. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    2. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    3. Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
    4. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    5. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    6. Alexander Vinel & Pavlo Krokhmal, 2014. "On Valid Inequalities for Mixed Integer p-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 439-456, February.
    7. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    8. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    9. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    10. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.
    11. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    12. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    13. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    14. Antonio Frangioni & Claudio Gentile & James Hungerford, 2020. "Decompositions of Semidefinite Matrices and the Perspective Reformulation of Nonseparable Quadratic Programs," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 15-33, February.
    15. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    16. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    17. Kay Giesecke & Baeho Kim & Jack Kim & Gerry Tsoukalas, 2014. "Optimal Credit Swap Portfolios," Management Science, INFORMS, vol. 60(9), pages 2291-2307, September.
    18. Xiaojin Zheng & Yutong Pan & Zhaolin Hu, 2021. "Perspective Reformulations of Semicontinuous Quadratically Constrained Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 163-179, January.
    19. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    20. X. Cui & X. Zheng & S. Zhu & X. Sun, 2013. "Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1409-1423, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1489-1511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.