IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.17915.html
   My bibliography  Save this paper

Dynamic Factor Model-Based Multiperiod Mean-Variance Portfolio Selection with Portfolio Constraints

Author

Listed:
  • Jianjun Gao
  • Chengneng Jin
  • Yun Shi
  • Xiangyu Cui

Abstract

Motivated by practical applications, we explore the constrained multi-period mean-variance portfolio selection problem within a market characterized by a dynamic factor model. This model captures predictability in asset returns driven by state variables and incorporates cone-type portfolio constraints that are crucial in practice. The model is broad enough to encompass various dynamic factor frameworks, including practical considerations such as no-short-selling and cardinality constraints. We derive a semi-analytical optimal solution using dynamic programming, revealing it as a piecewise linear feedback policy to wealth, with all factors embedded within the allocation vectors. Additionally, we demonstrate that the portfolio policies are determined by two specific stochastic processes resulting from the stochastic optimizations, for which we provide detailed algorithms. These processes reflect the investor's assessment of future investment opportunities and play a crucial role in characterizing the time consistency and efficiency of the optimal policy through the variance-optimal signed supermartingale measure of the market. We present numerical examples that illustrate the model's application in various settings. Using real market data, we investigate how the factors influence portfolio policies and demonstrate that incorporating the factor structure may enhance out-of-sample performance.

Suggested Citation

  • Jianjun Gao & Chengneng Jin & Yun Shi & Xiangyu Cui, 2025. "Dynamic Factor Model-Based Multiperiod Mean-Variance Portfolio Selection with Portfolio Constraints," Papers 2502.17915, arXiv.org.
  • Handle: RePEc:arx:papers:2502.17915
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.17915
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Chenxing & Maheu, John M, 2020. "A Multivariate GARCH-Jump Mixture Model," MPRA Paper 104770, University Library of Munich, Germany.
    2. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    3. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boons, Martijn & Duarte, Fernando & de Roon, Frans & Szymanowska, Marta, 2020. "Time-varying inflation risk and stock returns," Journal of Financial Economics, Elsevier, vol. 136(2), pages 444-470.
    2. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    3. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    4. Asil Azimli, 2022. "Policy uncertainty sensitivity, COVID-19 and industry returns in the United States," Economics and Business Letters, Oviedo University Press, vol. 11(3), pages 107-117.
    5. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    6. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    7. repec:uts:finphd:39 is not listed on IDEAS
    8. Manel Baucells & Samuel E. Bodily, 2024. "The Discount Rate for Investment Analysis Applying Expected Utility," Decision Analysis, INFORMS, vol. 21(2), pages 125-141, June.
    9. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    10. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    11. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    12. Hübner, Georges & Lejeune, Thomas, 2021. "Mental accounts with horizon and asymmetry preferences," Economic Modelling, Elsevier, vol. 103(C).
    13. Smith, Geoffrey Peter, 2024. "Why do firms with no leverage still have leverage and volatility feedback effects?," Journal of Empirical Finance, Elsevier, vol. 78(C).
    14. Jiménez-Martín, Juan-Ángel & Cinca, Alfonso Novales, 2010. "State-uncertainty preferences and the risk premium in the exchange rate market," Economic Modelling, Elsevier, vol. 27(5), pages 1043-1053, September.
    15. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    16. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    17. Erdemlioglu, Deniz & Joliet, Robert, 2019. "Long-term asset allocation, risk tolerance and market sentiment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 1-19.
    18. Peterburgsky, Stanley, 2021. "Aggregate volatility risk: International evidence," Global Finance Journal, Elsevier, vol. 47(C).
    19. Jimmy E. Hilliard & Jitka Hilliard, 2018. "Rebalancing versus buy and hold: theory, simulation and empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 1-32, January.
    20. Dierkes, Maik & Krupski, Jan, 2022. "Isolating momentum crashes," Journal of Empirical Finance, Elsevier, vol. 66(C), pages 1-22.
    21. Hu, Zhijun & Kutan, Ali M. & Sun, Ping-Wen, 2018. "Is U.S. economic policy uncertainty priced in China's A-shares market? Evidence from market, industry, and individual stocks," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 207-220.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.17915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.