IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v253y2017i1d10.1007_s10479-016-2351-9.html
   My bibliography  Save this article

Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations

Author

Listed:
  • Akash Tayal

    (Indira Gandhi Delhi Technical University for Women)

  • Angappa Gunasekaran

    (University of Massachusetts)

  • Surya Prakash Singh

    (Indian Institute of Technology Delhi)

  • Rameshwar Dubey

    (Symbiosis Institute University)

  • Thanos Papadopoulos

    (University of Kent)

Abstract

Facility layout design, a NP hard problem, is associated with the arrangement of facilities in a manufacturing shop floor, which impacts the performance, and cost of system. Efficient design of facility layout is a key to the sustainable operations in a manufacturing shop floor. An efficient layout design not only optimizes the cost and energy due to proficient handling but also increase flexibility and easy accessibility. Traditionally, it is solved using meta-heuristic techniques. But these algorithmic or procedural methodologies do not generate effective and efficient layout design from sustainable point of view, where design should consider multiple criteria such as demand fluctuations, material handling cost, accessibility, maintenance, waste and more. In this paper, to capture the sustainability in the layout design these parameters are considered, and a new sustainable stochastic dynamic facility layout problem (SDFLP) is formulated and solved. SDFLP is optimized for material handling cost and rearrangement cost using various meta-heuristic techniques. The pool of layouts thus generated are then analyzed by data envelopment analysis to identify efficient layouts. A novel hierarchical methodology of consensus ranking of layouts is proposed which combines the multiple attributes/criteria. Multi attribute decision-making techniques such as technique for order preference by similarity to ideal solution, interpretive ranking process and analytic hierarchy process, Borda–Kendall and integer linear programming based rank aggregation techniques are applied. To validate the proposed methodology data sets for facility size $$N=12$$ N = 12 for time period $$T=5$$ T = 5 having Gaussian demand are considered.

Suggested Citation

  • Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
  • Handle: RePEc:spr:annopr:v:253:y:2017:i:1:d:10.1007_s10479-016-2351-9
    DOI: 10.1007/s10479-016-2351-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2351-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2351-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Yang, Taho & Kuo, Chunwei, 2003. "A hierarchical AHP/DEA methodology for the facilities layout design problem," European Journal of Operational Research, Elsevier, vol. 147(1), pages 128-136, May.
    3. Matai, Rajesh, 2015. "Solving multi objective facility layout problem by modified simulated annealing," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 302-311.
    4. David F. Drake & Stefan Spinler, 2013. "OM Forum —Sustainable Operations Management: An Enduring Stream or a Passing Fancy?," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 689-700, October.
    5. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    6. Wantao Yu & Ramakrishnan Ramanathan, 2015. "An empirical examination of stakeholder pressures, green operations practices and environmental performance," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6390-6407, November.
    7. Balakrishnan, Jaydeep & Hung Cheng, Chun, 2009. "The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty," Omega, Elsevier, vol. 37(1), pages 165-177, February.
    8. Balakrishnan, Jaydeep & Jacobs, F. Robert & Venkataramanan, Munirpallam A., 1992. "Solutions for the constrained dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 280-286, March.
    9. Wade D. Cook & Lawrence M. Seiford, 1982. "On the Borda-Kendall Consensus Method for Priority Ranking Problems," Management Science, INFORMS, vol. 28(6), pages 621-637, June.
    10. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    11. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    12. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2007. "Multi-period planning and uncertainty issues in cellular manufacturing: A review and future directions," European Journal of Operational Research, Elsevier, vol. 177(1), pages 281-309, February.
    13. Wade D. Cook & Moshe Kress, 1985. "Ordinal Ranking with Intensity of Preference," Management Science, INFORMS, vol. 31(1), pages 26-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Wu & Zhixin Chen & Xiang Ji, 2020. "Sustainable trade promotion decisions under demand disruption in manufacturer-retailer supply chains," Annals of Operations Research, Springer, vol. 290(1), pages 115-143, July.
    2. Vadivel Sengazhani Murugesan & Sunil Kumar Jauhar & Aloysius Henry Sequeira, 2022. "Applying simulation in lean service to enhance the operational system in Indian postal service industry," Annals of Operations Research, Springer, vol. 315(2), pages 993-1017, August.
    3. Mahmud A. Shareef & Yogesh K. Dwivedi & Vinod Kumar & D. Laurie Hughes & Ramakrishnan Raman, 2022. "Sustainable supply chain for disaster management: structural dynamics and disruptive risks," Annals of Operations Research, Springer, vol. 319(1), pages 1451-1475, December.
    4. Heidary Dahooie, Jalil & Qorbani, Ali Reza & Daim, Tugrul, 2021. "Providing a framework for selecting the appropriate method of technology acquisition considering uncertainty in hierarchical group decision-making: Case Study: Interactive television technology," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    5. Sushil, 2020. "Interpretive multi-criteria ranking of production systems with ordinal weights and transitive dominance relationships," Annals of Operations Research, Springer, vol. 290(1), pages 677-695, July.
    6. Shaofu Du & Yujiao Zhu & Yangguang Zhu & Wenzhi Tang, 2020. "Allocation policy considering firm’s time-varying emission reduction in a cap-and-trade system," Annals of Operations Research, Springer, vol. 290(1), pages 543-565, July.
    7. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    8. Abdelahad Chraibi & Ibrahim H. Osman & Said Kharraja, 2019. "Adaptive layout for operating theatre in hospitals: different mathematical models for optimal layouts," Annals of Operations Research, Springer, vol. 272(1), pages 493-527, January.
    9. Akash Tayal & Surya Prakash Singh, 2019. "Formulating multi-objective stochastic dynamic facility layout problem for disaster relief," Annals of Operations Research, Springer, vol. 283(1), pages 837-863, December.
    10. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    11. Noura Yassine, 2020. "A sustainable economic production model: effects of quality and emissions tax from transportation," Annals of Operations Research, Springer, vol. 290(1), pages 73-94, July.
    12. Dongwook Kim & Kyungsik Lee & Ilkyeong Moon, 2019. "Stochastic facility location model for drones considering uncertain flight distance," Annals of Operations Research, Springer, vol. 283(1), pages 1283-1302, December.
    13. Kuldeep Lamba & Ravi Kumar & Shraddha Mishra & Shubhangini Rajput, 2020. "Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic," Annals of Operations Research, Springer, vol. 290(1), pages 5-26, July.
    14. Xing Wan & Xing-Quan Zuo & Xin-Chao Zhao, 2021. "A Surrogate Model-Based Hybrid Approach for Stochastic Robust Double Row Layout Problem," Mathematics, MDPI, vol. 9(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tseng, Fang-Mei & Chiu, Yu-Jing & Chen, Ja-Shen, 2009. "Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies," Omega, Elsevier, vol. 37(3), pages 686-697, June.
    2. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    3. Baskaran, Venkatesan & Nachiappan, Subramanian & Rahman, Shams, 2012. "Indian textile suppliers' sustainability evaluation using the grey approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 647-658.
    4. Seyed Saeed Hosseinian & Hamidreza Navidi & Abas Hajfathaliha, 2012. "A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 21(3), pages 233-254, May.
    5. Lin, Ming-Ian & Lee, Yuan-Duen & Ho, Tsai-Neng, 2011. "Applying integrated DEA/AHP to evaluate the economic performance of local governments in China," European Journal of Operational Research, Elsevier, vol. 209(2), pages 129-140, March.
    6. Mohammad Pakkar, 2015. "An integrated approach based on DEA and AHP," Computational Management Science, Springer, vol. 12(1), pages 153-169, January.
    7. Qingxian An & Fanyong Meng & Beibei Xiong, 2018. "Interval cross efficiency for fully ranking decision making units using DEA/AHP approach," Annals of Operations Research, Springer, vol. 271(2), pages 297-317, December.
    8. Korpela, Jukka & Lehmusvaara, Antti & Nisonen, Jukka, 2007. "Warehouse operator selection by combining AHP and DEA methodologies," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 135-142, July.
    9. Dincer, Hasan & Hacioglu, Umit & Tatoglu, Ekrem & Delen, Dursun, 2019. "Developing a hybrid analytics approach to measure the efficiency of deposit banks," Journal of Business Research, Elsevier, vol. 104(C), pages 131-145.
    10. Saaty, Thomas L. & Shang, Jen S., 2007. "Group decision-making: Head-count versus intensity of preference," Socio-Economic Planning Sciences, Elsevier, vol. 41(1), pages 22-37, March.
    11. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    12. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    13. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    14. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    15. Zanakis, Stelios H. & Mandakovic, Tomislav & Gupta, Sushil K. & Sahay, Sundeep & Hong, Sungwan, 1995. "A review of program evaluation and fund allocation methods within the service and government sectors," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 59-79, March.
    16. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    17. P P Sutton & R H Green, 2007. "Choice is a value statement. On inferring optimal multiple attribute portfolios from non-optimal nominations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1526-1533, November.
    18. Chen, Chung-Chiang, 2010. "A performance evaluation of MSW management practice in Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1353-1361.
    19. H Seol & H Lee & S Kim & Y Park, 2008. "The impact of information technology on organizational efficiency in public services: a DEA-based DT approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 231-238, February.
    20. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:253:y:2017:i:1:d:10.1007_s10479-016-2351-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.