IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v152y2007i1p167-19110.1007-s10479-006-0133-5.html
   My bibliography  Save this article

Scenario optimization asset and liability modelling for individual investors

Author

Listed:
  • Andrea Consiglio

    ()

  • Flavio Cocco

    ()

  • Stavros Zenios

    ()

Abstract

We develop a scenario optimization model for asset and liability management of individual investors. The individual has a given level of initial wealth and a target goal to be reached within some time horizon. The individual must determine an asset allocation strategy so that the portfolio growth rate will be sufficient to reach the target. A scenario optimization model is formulated which maximizes the upside potential of the portfolio, with limits on the downside risk. Both upside and downside are measured vis-à-vis the goal. The stochastic behavior of asset returns is captured through bootstrap simulation, and the simulation is embedded in the model to determine the optimal portfolio. Post-optimality analysis using out-of-sample scenarios measures the probability of success of a given portfolio. It also allows us to estimate the required increase in the initial endowment so that the probability of success is improved. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Andrea Consiglio & Flavio Cocco & Stavros Zenios, 2007. "Scenario optimization asset and liability modelling for individual investors," Annals of Operations Research, Springer, vol. 152(1), pages 167-191, July.
  • Handle: RePEc:spr:annopr:v:152:y:2007:i:1:p:167-191:10.1007/s10479-006-0133-5
    DOI: 10.1007/s10479-006-0133-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0133-5
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 73-92.
    2. Andrea Consiglio & Flavio Cocco & Stavros A. Zenios, 2001. "The Value of Integrative Risk Management for Insurance Products with Guarantees," Center for Financial Institutions Working Papers 01-06, Wharton School Center for Financial Institutions, University of Pennsylvania.
    3. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Michael Haliassos and Alexander Michaelides, 2001. "Calibration and Computation of Household Portfolio Models," Computing in Economics and Finance 2001 194, Society for Computational Economics.
    6. Liu, Jun & Longstaff, Francis & Pan, Jun, 2001. "Dynamic Asset Allocation with Event Risk," University of California at Los Angeles, Anderson Graduate School of Management qt9fm6t5nb, Anderson Graduate School of Management, UCLA.
    7. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    8. Marjorie Flavin & Takashi Yamashita, 2002. "Owner-Occupied Housing and the Composition of the Household Portfolio," American Economic Review, American Economic Association, vol. 92(1), pages 345-362, March.
    9. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audrius Kabašinskas & Francesca Maggioni & Kristina Šutienė & Eimutis Valakevičius, 2019. "A multistage risk-averse stochastic programming model for personal savings accrual: the evidence from Lithuania," Annals of Operations Research, Springer, vol. 279(1), pages 43-70, August.
    2. Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
    3. Anne Pedersen & Alex Weissensteiner & Rolf Poulsen, 2013. "Financial planning for young households," Annals of Operations Research, Springer, vol. 205(1), pages 55-76, May.
    4. Sebastiano Vitali & Vittorio Moriggia & Miloš Kopa, 2017. "Optimal pension fund composition for an Italian private pension plan sponsor," Computational Management Science, Springer, vol. 14(1), pages 135-160, January.
    5. Andrea Consiglio & Flavio Cocco & Stavros A. Zenios, 2001. "The Value of Integrative Risk Management for Insurance Products with Guarantees," Center for Financial Institutions Working Papers 01-06, Wharton School Center for Financial Institutions, University of Pennsylvania.
    6. Andrea Consiglio & Flavio Cocco & Stavros A. Zenios, 2004. "www.Personal_Asset_Allocation," Interfaces, INFORMS, vol. 34(4), pages 287-302, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:152:y:2007:i:1:p:167-191:10.1007/s10479-006-0133-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.