IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v90y2006i1p199-215.html
   My bibliography  Save this article

The microeconometric estimation of treatment effects—An overview

Author

Listed:
  • Marco Caliendo

    ()

  • Reinhard Hujer

    ()

Abstract

The need to evaluate the performance of active labour market policies is not questioned any longer. Even though OECD countries spend significant shares of national resources on these measures, unemployment rates remain high or even increase. We focus on microeconometric evaluation which has to solve the fundamental evaluation problem and overcome the possible occurrence of selection bias. When using non-experimental data, different evaluation approaches can be thought of. The aim of this paper is to review the most relevant estimators, discuss their identifying assumptions and their (dis-)advantages. Thereby we will present estimators based on some form of exogeneity (selection on observables) as well as estimators where selection might also occur on unobservable characteristics. Since the possible occurrence of effect heterogeneity has become a major topic in evaluation research in recent years, we will also assess the ability of each estimator to deal with it. Additionally, we will also discuss some recent extensions of the static evaluation framework to allow for dynamic treatment evaluation.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Marco Caliendo & Reinhard Hujer, 2006. "The microeconometric estimation of treatment effects—An overview," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 199-215, March.
  • Handle: RePEc:spr:alstar:v:90:y:2006:i:1:p:199-215
    DOI: 10.1007/s10182-006-0230-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-006-0230-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    3. repec:spr:portec:v:1:y:2002:i:2:d:10.1007_s10258-002-0010-3 is not listed on IDEAS
    4. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    5. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    6. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    7. Jeffrey Smith, 2000. "A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(III), pages 247-268, September.
    8. Puhani, Patrick A, 2000. " The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    9. Michael Lechner, 2004. "Sequential Matching Estimation of Dynamic Causal Models," University of St. Gallen Department of Economics working paper series 2004 2004-06, Department of Economics, University of St. Gallen.
    10. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    11. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Evaluation; effect heterogeneity; matching; dynamic treatments; JEL C40; H43; J68;

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • H43 - Public Economics - - Publicly Provided Goods - - - Project Evaluation; Social Discount Rate
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:90:y:2006:i:1:p:199-215. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.