Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo
Author
Abstract
Suggested Citation
DOI: 10.1177/0972150920923316
Download full text from publisher
References listed on IDEAS
- Jia Liu & Daniel J. Nordman & William Q. Meeker, 2016. "The Number of MCMC Draws Needed to Compute Bayesian Credible Bounds," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 275-284, July.
- Marazzo, Marcial & Scherre, Rafael & Fernandes, Elton, 2010. "Air transport demand and economic growth in Brazil: A time series analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 261-269, March.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
- Shu-Chuan Chen & Shih-Yao Kuo & Kuo-Wei Chang & Yi-Ting Wang, 2012. "Improving the forecasting accuracy of air passenger and air cargo demand: the application of back-propagation neural networks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(3), pages 373-392, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
- Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
- Emami Javanmard, Majid & Tang, Yili & Martínez-Hernández, J. Adrián, 2024. "Forecasting air transportation demand and its impacts on energy consumption and emission," Applied Energy, Elsevier, vol. 364(C).
- Gudmundsson, S.V. & Cattaneo, M. & Redondi, R., 2021. "Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19," Journal of Air Transport Management, Elsevier, vol. 91(C).
- Khan, Muhammad Asif & Segovia, Juan E.Trinidad & Bhatti, M.Ishaq & Kabir, Asif, 2023. "Corporate vulnerability in the US and China during COVID-19: A machine learning approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
- Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Empirical Study towards the Drivers of Sustainable Economic Growth in EU-28 Countries," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
- Rayaprolu, Hema & Levinson, David, 2024. "Co-evolution of public transport access and ridership," Journal of Transport Geography, Elsevier, vol. 116(C).
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019.
"The Impact of Big Data on Firm Performance: An Empirical Investigation,"
AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
- Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2018. "The Impact of Big Data on Firm Performance: An Empirical Investigation," NBER Working Papers 24334, National Bureau of Economic Research, Inc.
- Katsuyuki Tanaka & Takuo Higashide & Takuji Kinkyo & Shigeyuki Hamori, 2025. "A Multi-Stage Financial Distress Early Warning System: Analyzing Corporate Insolvency with Random Forest," JRFM, MDPI, vol. 18(4), pages 1-16, April.
- Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
- Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Air transport; demand; short-term forecasting; ARIMA; Bayesian structural time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:24:y:2023:i:6:p:1145-1179. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.