IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v47y2020i4p662-677.html
   My bibliography  Save this article

Impact of bicycle highways on commuter mode choice: A scenario analysis

Author

Listed:
  • Hema S Rayaprolu
  • Carlos Llorca
  • Rolf Moeckel

Abstract

The Dutch concept of ‘bicycle highways’ is increasingly being adopted by urban planners owing to rising environmental and health consciousness, and the growing popularity of electric bicycles. Bicycle highways differ from other types of cycling infrastructure in that they avoid intersections with motorised traffic, and are wide enough to allow for safe overtaking, thereby increasing cycling speeds. While many studies investigate the feasibility of constructing bicycle highways, few explore their effect on users’ travel preferences. In this context, our study aims to assess the potential impact of bicycle highways on commuter mode choice. We built a discrete choice model based on individual commute data from a national household travel survey, Mobilität in Deutschland 2008. The model was estimated in a logit modelling framework using Biogeme. We estimated multinomial logit and nested logit models and found nested logit to be more appropriate. The model estimates were then applied to forecast mode shares in scenarios with the pilot bicycle highway proposed in the Munich region. The variation in mode shares across scenarios with increasing average cycling speeds was analysed in areas with varying proximity to the infrastructure. The results suggest that bicycle highways reduce motorised travel and increase cycling. The effect is stronger as proximity to the corridor increases. The analysis helps to quantify the potential impact of bicycle highways on commuter mode choice even without considering further benefits beyond travel time reductions, such as increased safety, convenience, comfort, and reduced risks due to fewer interactions with motorised traffic.

Suggested Citation

  • Hema S Rayaprolu & Carlos Llorca & Rolf Moeckel, 2020. "Impact of bicycle highways on commuter mode choice: A scenario analysis," Environment and Planning B, , vol. 47(4), pages 662-677, May.
  • Handle: RePEc:sae:envirb:v:47:y:2020:i:4:p:662-677
    DOI: 10.1177/2399808318797334
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808318797334
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808318797334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    2. Song, Yena & Preston, John & Ogilvie, David, 2017. "New walking and cycling infrastructure and modal shift in the UK: A quasi-experimental panel study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 320-333.
    3. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    4. Noland, Robert B & Kunreuther, Howard, 1995. "Short-run and long-run policies for increasing bicycle transportation for daily commuter trips," Transport Policy, Elsevier, vol. 2(1), pages 67-79, January.
    5. Skov-Petersen, Hans & Jacobsen, Jette Bredahl & Vedel, Suzanne Elizabeth & Thomas Alexander, Sick Nielsen & Rask, Simon, 2017. "Effects of upgrading to cycle highways - An analysis of demand induction, use patterns and satisfaction before and after," Journal of Transport Geography, Elsevier, vol. 64(C), pages 203-210.
    6. Wardman, Mark & Hatfield, Richard & Page, Matthew, 1997. "The UK national cycling strategy: can improved facilities meet the targets?," Transport Policy, Elsevier, vol. 4(2), pages 123-133, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuno Sousa & João Monteiro & Eduardo Natividade-Jesus & João Coutinho-Rodrigues, 2023. "The impact of geometric and land use elements on the perceived pleasantness of urban layouts," Environment and Planning B, , vol. 50(3), pages 740-756, March.
    2. Rico Krueger & Michel Bierlaire & Thomas Gasos & Prateek Bansal, 2020. "Robust discrete choice models with t-distributed kernel errors," Papers 2009.06383, arXiv.org, revised Dec 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    2. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    3. Verma, Meghna & Rahul, T.M. & Vinayak, Pragun & Verma, Ashish, 2018. "Influence of childhood and adulthood attitudinal perceptions on bicycle usage in the Bangalore city," Journal of Transport Geography, Elsevier, vol. 72(C), pages 94-105.
    4. Hyochul Park & Yong Lee & Hee Shin & Keemin Sohn, 2011. "Analyzing the time frame for the transition from leisure-cyclist to commuter-cyclist," Transportation, Springer, vol. 38(2), pages 305-319, March.
    5. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    6. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    7. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    8. Laird, James & Page, Matthew & Shen, Shujie, 2013. "The value of dedicated cyclist and pedestrian infrastructure on rural roads," Transport Policy, Elsevier, vol. 29(C), pages 86-96.
    9. Braun, Lindsay M. & Rodriguez, Daniel A. & Cole-Hunter, Tom & Ambros, Albert & Donaire-Gonzalez, David & Jerrett, Michael & Mendez, Michelle A. & Nieuwenhuijsen, Mark J. & de Nazelle, Audrey, 2016. "Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 164-183.
    10. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.
    11. Álvaro Fernández-Heredia & Sergio Jara-Díaz & Andrés Monzón, 2016. "Modelling bicycle use intention: the role of perceptions," Transportation, Springer, vol. 43(1), pages 1-23, January.
    12. Sarah J. Bundy Kirkpatrick, 2018. "Pedaling disaster: citizen bicyclists in disaster response—Innovative solution or unnecessary effort?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 365-389, January.
    13. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    14. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    15. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    16. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    17. Götschi, Thomas & Hintermann, Beat, 2013. "Valuation of public investment to support bicycling (FV-09)," Working papers 2013/02, Faculty of Business and Economics - University of Basel.
    18. Ma, Liang & Ye, Runing, 2019. "Does daily commuting behavior matter to employee productivity?," Journal of Transport Geography, Elsevier, vol. 76(C), pages 130-141.
    19. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    20. Acheampong, Ransford A. & Siiba, Alhassan, 2018. "Examining the determinants of utility bicycling using a socio-ecological framework: An exploratory study of the Tamale Metropolis in Northern Ghana," Journal of Transport Geography, Elsevier, vol. 69(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:47:y:2020:i:4:p:662-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.