IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i6p938-956.html
   My bibliography  Save this article

Integrating energy and environmental management systems to enable facilities to qualify for carbon funds

Author

Listed:
  • Stamatis Chrysikopoulos
  • Panos Chountalas

Abstract

The purpose of this paper is to propose a practical framework that integrates energy and environmental management systems to satisfy the monitoring and verification requirements of facilities energy conservation and greenhouse gas emissions reduction; these requirements are essential for organisations to access financing mechanisms, such as carbon funds. As a reference point, the framework uses the ISO 50001 standard, which pertains to an organisation’s energy management procedures. This framework is enriched with elements from other standards, such as ISO 14001 (environmental management system) and ISO 14064 (GHG verification system). The framework also incorporates sound technology management practices and other obligations, such as those arising from international law. It, thus, allows for the systematic quantification, assessment and forecasting of the energy and environmental footprints of facilities throughout their life cycles, enabling them to qualify for carbon funds.

Suggested Citation

  • Stamatis Chrysikopoulos & Panos Chountalas, 2018. "Integrating energy and environmental management systems to enable facilities to qualify for carbon funds," Energy & Environment, , vol. 29(6), pages 938-956, September.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:6:p:938-956
    DOI: 10.1177/0958305X18762586
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18762586
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18762586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pham, Thi Hong Hanh, 2015. "Energy management systems and market value: Is there a link?," Economic Modelling, Elsevier, vol. 46(C), pages 70-78.
    2. Antunes, Pedro & Carreira, Paulo & Mira da Silva, Miguel, 2014. "Towards an energy management maturity model," Energy Policy, Elsevier, vol. 73(C), pages 803-814.
    3. Thi Hong Hanh Pham, 2015. "Energy management systems and market value: Is there a link?," Post-Print hal-03705802, HAL.
    4. Lambert Schneider & Anja Kollmuss & Michael Lazarus, 2015. "Addressing the risk of double counting emission reductions under the UNFCCC," Climatic Change, Springer, vol. 131(4), pages 473-486, August.
    5. Wei, Min & Hong, Seung Ho & Alam, Musharraf, 2016. "An IoT-based energy-management platform for industrial facilities," Applied Energy, Elsevier, vol. 164(C), pages 607-619.
    6. Ming, Zeng & Ximei, Liu & Yulong, Li & Lilin, Peng, 2014. "Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 23-37.
    7. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    8. Liu, Shuo & Wilkes, Andreas & Li, Yu’e & Gao, Qingzhu & Wan, Yunfan & Ma, Xin & Qin, Xiaobo, 2016. "Contribution of different sectors to developed countries’ fulfillment of GHG emission reduction targets under the first commitment period of the Kyoto Protocol," Environmental Science & Policy, Elsevier, vol. 61(C), pages 143-153.
    9. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    10. Petri, Ioan & Li, Haijiang & Rezgui, Yacine & Chunfeng, Yang & Yuce, Baris & Jayan, Bejay, 2014. "A modular optimisation model for reducing energy consumption in large scale building facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 990-1002.
    11. Laskurain, Iker & Heras-Saizarbitoria, Iñaki & Casadesús, Martí, 2015. "Fostering renewable energy sources by standards for environmental and energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1148-1156.
    12. Mark Hinnells & Susan Bright & Angela Langley & Lloyd Woodford & Pernille Schiellerup & Tatiana Bosteels, 2008. "The greening of commercial leases," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 26(6), pages 541-551, September.
    13. Rahman, Shaikh M. & Kirkman, Grant A., 2015. "Costs of certified emission reductions under the Clean Development Mechanism of the Kyoto Protocol," Energy Economics, Elsevier, vol. 47(C), pages 129-141.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izabela Simon Rampasso & Geraldo Pereira Melo Filho & Rosley Anholon & Robson Amarante de Araujo & Gilson Brito Alves Lima & Luis Perez Zotes & Walter Leal Filho, 2019. "Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    2. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    3. Păunescu Carmen & Blid Laura, 2016. "Effective energy planning for improving the enterprise’s energy performance," Management & Marketing, Sciendo, vol. 11(3), pages 512-531, September.
    4. Zou, Hongyang & Du, Huibin & Ren, Jingzheng & Sovacool, Benjamin K. & Zhang, Yongjie & Mao, Guozhu, 2017. "Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 197-206.
    5. Danquah Jeff Boakye & Ishmael TIngbani & Gabriel Ahinful & Isaac Damoah & Venancio Tauringana, 2020. "Sustainable environmental practices and financial performance: Evidence from listed small and medium‐sized enterprise in the United Kingdom," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2583-2602, September.
    6. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2016. "Economic and environmental effectiveness of renewable energy policy instruments: Best practices from India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 487-498.
    7. Kenjegaliev, Amangeldi & Duygun, Meryem & Mamedshakhova, Djamila, 2016. "Do rating grades convey important information: German evidence?," Economic Modelling, Elsevier, vol. 53(C), pages 334-344.
    8. Zubizarreta, Mikel & Arana-Landín, Germán & Wolff, Sarah & Egiluz, Ziortza, 2023. "Assessing the economic impacts of forest certification in Spain: A longitudinal study," Ecological Economics, Elsevier, vol. 204(PA).
    9. Rafael Uriarte-Romero & Margarita Gil-Samaniego & Edgar Valenzuela-Mondaca & Juan Ceballos-Corral, 2017. "Methodology for the Successful Integration of an Energy Management System to an Operational Environmental System," Sustainability, MDPI, vol. 9(8), pages 1-9, July.
    10. Iker Laskurain & Ander Ibarloza & Ainara Larrea & Erlantz Allur, 2017. "Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS," Energies, MDPI, vol. 10(11), pages 1-21, November.
    11. Julia Reisinger & Patrick Hollinsky & Iva Kovacic, 2021. "Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    12. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    13. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    14. Yufeng Chen & Wenqi Li & Xi Jin, 2018. "Volatility Spillovers between Crude Oil Prices and New Energy Stock Price in China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 43-62, December.
    15. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    16. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    17. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    19. Wei Wang & Shoujian Zhang & Yikun Su & Xinyang Deng, 2019. "An Empirical Analysis of the Factors Affecting the Adoption and Diffusion of GBTS in the Construction Market," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    20. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:6:p:938-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.