IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v39y2018i4p31-56.html
   My bibliography  Save this article

Cost Efficiency Analysis of Electricity Distribution Sector under Model Uncertainty

Author

Listed:
  • Kamil Makieia
  • Jacek Osiewalski

Abstract

This paper discusses a Bayesian approach to analyzing cost efficiency of Distribution System Operators when model specification and variable selection are difficult to determine. Bayesian model selection and inference pooling techniques are adopted in a stochastic frontier analysis to mitigate the problem of model uncertainty. Adequacy of a given specification is judged by its posterior probability, which makes the benchmarking process not only more transparent but also much more objective. The proposed methodology is applied to one of Polish Distribution System Operators. We find that variable selection plays an important role and models, which are the best at describing the data, are rather parsimonious. They rely on just a few variables determining the observed cost. However, these models also show relatively high average efficiency scores among analyzed objects.

Suggested Citation

  • Kamil Makieia & Jacek Osiewalski, 2018. "Cost Efficiency Analysis of Electricity Distribution Sector under Model Uncertainty," The Energy Journal, , vol. 39(4), pages 31-56, July.
  • Handle: RePEc:sae:enejou:v:39:y:2018:i:4:p:31-56
    DOI: 10.5547/01956574.39.4.kmak
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.39.4.kmak
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.39.4.kmak?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian von Hirschhausen & Astrid Cullmann & Andreas Kappeler, 2006. "Efficiency analysis of German electricity distribution utilities - non-parametric and parametric tests," Applied Economics, Taylor & Francis Journals, vol. 38(21), pages 2553-2566.
    2. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    3. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    4. Tim Coelli & Antonio Estache & Sergio Perelman & Lourdes Trujillo, 2003. "A Primer on Efficiency Measurement for Utilities and Transport Regulators," World Bank Publications - Books, The World Bank Group, number 15149, April.
    5. Tooraj Jamasb and Michael Pollitt, 2005. "Electricity Market Reform in the European Union: Review of Progress toward Liberalization & Integration," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 11-42.
    6. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    7. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    8. Magnus, Jan R, 1979. "Substitution between Energy and Non-Energy Inputs in the Netherlands, 1950-1976," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 465-484, June.
    9. Krzysztof Osiewalski & Jacek Osiewalski, 2013. "A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)–MSF-SBEKK Model," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(1), pages 65-83, March.
    10. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    11. Mehdi Farsi & Massimo Filippini, 2004. "Regulation and Measuring Cost-Efficiency with Panel Data Models: Application to Electricity Distribution Utilities," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 25(1), pages 1-19, August.
    12. Dimitri Dimitropoulos and Adonis Yatchew, 2017. "Is Productivity Growth in Electricity Distribution Negative? An Empirical Analysis Using Ontario Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    14. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    2. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    3. Ajayi, Victor & Anaya, Karim & Pollitt, Michael, 2022. "Incentive regulation, productivity growth and environmental effects: the case of electricity networks in Great Britain," Energy Economics, Elsevier, vol. 115(C).
    4. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    5. Cambini, Carlo & Croce, Annalisa & Fumagalli, Elena, 2014. "Output-based incentive regulation in electricity distribution: Evidence from Italy," Energy Economics, Elsevier, vol. 45(C), pages 205-216.
    6. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    7. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    8. Hongzhou Li & Andrea Appolloni & Yijie Dou & Vincenzo Basile & Maria Kopsakangas-Savolainen, 2024. "A parametric method to estimate environmental energy efficiency with non-radial adjustment: an application to China," Annals of Operations Research, Springer, vol. 342(3), pages 1379-1405, November.
    9. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    10. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    11. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    12. Fu, Tong & Jian, Ze, 2020. "A developmental state: How to allocate electricity efficiently in a developing country," Energy Policy, Elsevier, vol. 138(C).
    13. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2007. "Benchmarking and Regulation in the Electricity Distribution Sector," CEPE Working paper series 07-54, CEPE Center for Energy Policy and Economics, ETH Zurich.
    14. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    15. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    16. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    17. Gale A. Boyd & Jonathan M. Lee, 2020. "Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry," The Energy Journal, , vol. 41(3), pages 39-62, May.
    18. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    19. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
    20. Akihiro Otsuka, 2018. "Regional Determinants of Energy Efficiency: Residential Energy Demand in Japan," Energies, MDPI, vol. 11(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:39:y:2018:i:4:p:31-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.