IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v17y1996i4p135-160.html
   My bibliography  Save this article

Energy Efficiency, Economic Efficiency and Future CO2 Emissions from the Developing World

Author

Listed:
  • Peter J. G. Pearson
  • Roger Fouquet

Abstract

This paper examines the potential role of energy efficiency and economic efficiency in influencing the future carbon dioxide emissions of developing countries. It explores and offers support to the hypothesis that, despite the potential value to the developing world of greater energy efficiency, if tight restrictions on global carbon dioxide emissions were considered necessary, efficiency alone could make only a limited contribution to restraining the projected growth of developing country emissions. This is because of the projected rapid energy growth rates in most developing countries, especially in the industrial sector and from fossil-fuelled electricity and transport, associated with growth in per capita incomes and population. The potential contribution of other possible measures to address global carbon dioxide emissions, particularly fuel switching, is also briefly examined.

Suggested Citation

  • Peter J. G. Pearson & Roger Fouquet, 1996. "Energy Efficiency, Economic Efficiency and Future CO2 Emissions from the Developing World," The Energy Journal, , vol. 17(4), pages 135-160, October.
  • Handle: RePEc:sae:enejou:v:17:y:1996:i:4:p:135-160
    DOI: 10.5547/ISSN0195-6574-EJ-Vol17-No4-6
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol17-No4-6
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol17-No4-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. AGUIR BARGAOUI, Saoussen, 2019. "Carbon dioxide emissions mitigation strategies’ performance," MPRA Paper 103853, University Library of Munich, Germany.
    2. Qianqian Wu & Rong Wang, 2022. "Exploring the Role of Environmental Regulation and Fiscal Decentralization in Regional Energy Efficiency in the Context of Global Climate," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    3. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    4. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    5. Debyani Ghosh, 2008. "Renewable Energy Strategies for Indian Power Sector," Working Papers id:1715, eSocialSciences.
    6. Christian Ifeanyi ENETE & Michael Oloyede ALABI, 2011. "Potential Impacts of Global Climate Change on Power and Energy Generation," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(6), pages 1-14, October.
    7. Nepal, Rabindra & Musibau, Hammed Oluwaseyi & Jamasb, Tooraj, 2021. "Energy consumption as an indicator of energy efficiency and emissions in the European Union: A GMM based quantile regression approach," Energy Policy, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
    2. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    3. Pillai N., Vijayamohanan, 2019. "Measuring Energy Efficiency: An Application of Data Envelopment Analysis to Power Sector in Kerala," MPRA Paper 101945, University Library of Munich, Germany.
    4. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    5. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    6. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    7. Davis, W. Bart & Sanstad, Alan H. & Koomey, Jonathan G., 2003. "Contributions of weather and fuel mix to recent declines in US energy and carbon intensity," Energy Economics, Elsevier, vol. 25(4), pages 375-396, July.
    8. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    9. Madanmohan Ghosh & Deming Luo & Muhammad Shahid Siddiqui & Thomas Rutherford & Yunfa Zhu, 2020. "The Drivers of Greenhouse Gas Emissions Intensity Improvements in Major Economies: Analysis of Trends 1995–2009," Foreign Trade Review, , vol. 55(3), pages 277-297, August.
    10. Stephen Casler & Adam Rose, 1998. "Carbon Dioxide Emissions in the U.S. Economy: A Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 349-363, April.
    11. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Analysis of energy intensity in Japan," Energy Policy, Elsevier, vol. 61(C), pages 574-586.
    12. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    13. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
    14. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    15. Wang, Ce & Liao, Hua & Pan, Su-Yan & Zhao, Lu-Tao & Wei, Yi-Ming, 2014. "The fluctuations of China’s energy intensity: Biased technical change," Applied Energy, Elsevier, vol. 135(C), pages 407-414.
    16. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    17. Ming, Wei & Nazifi, Fatemeh & Trück, Stefan, 2024. "Emission intensities in the Australian National Electricity Market – An econometric analysis," Energy Economics, Elsevier, vol. 129(C).
    18. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    19. Santosh Kumar SAHU & K NARAYANAN, 2010. "Decomposition Of Industrial Energy Consumption In Indian Manufacturing The Energy Intensity Approach," Journal of Advanced Research in Management, ASERS Publishing, vol. 1(1), pages 22-38.
    20. Lars Wenzel & Andr Wolf, 2014. "Changing Patterns of Electricity Usage in European Manufacturing: A Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 516-530.

    More about this item

    Keywords

    Energy efficiency; carbon dioxide emissions; developing countries; carbon abatement;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:17:y:1996:i:4:p:135-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.