IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2011i1p54-71.html
   My bibliography  Save this article

Financial Information Fraud Risk Warning for Manufacturing Industry - Using Logistic Regression and Neural Network

Author

Listed:
  • Shih, Kuang Hsun

    (Department of Banking and Finance, Chinese Culture University, No.55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, Taiwan, 11114)

  • Cheng, Ching Chan

    (Department of Food & Beverage Management, Taipei College of Maritime Technology, No.212, Sec.9, Yen Ping N, Taipei, Taiwan, 11114)

  • Wang, Yi Hsien

    ()

Abstract

This study aims to use financial variables, corporate governance variables, and cash flow variables to construct financial information fraud warning models for the manufacturing industry, and applies logistics regression and back propagation neural network (BPNN) to determine the accuracy rate of identifying normal company samples and fraudulent company samples. In a ratio of ‘1:2’, this study collects the data of 96 fraudulent company samples and 192 normal company samples, over a period of 3 years (a total of 288 samples) for prediction. The results indicate that debt ratio and shareholding ratio of board directors are two important financial variables for the identification of manufacturing industry frauds. Logistic regression has better identification capacity than BPNN in both cases of normal and fraudulent company samples. This study provides a set of correct and real-time financial information fraud warning models for the manufacturing industry, which can predict financial information frauds by observing the changes of various financial variables and shareholding ratio of the board directors in real-time. These findings can serve as a reference to financiers and the manufacturing industry for establishing credit policies.

Suggested Citation

  • Shih, Kuang Hsun & Cheng, Ching Chan & Wang, Yi Hsien, 2011. "Financial Information Fraud Risk Warning for Manufacturing Industry - Using Logistic Regression and Neural Network," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 54-71, March.
  • Handle: RePEc:rjr:romjef:v::y:2011:i:1:p:54-71
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef1_11/rjef1_2011p54-71.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. repec:bla:joares:v:23:y:1985:i:1:p:384-401 is not listed on IDEAS
    2. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    3. Mark E. Wohar & David E. Rapach, 2005. "Valuation ratios and long-horizon stock price predictability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 327-344.
    4. repec:bla:joares:v:4:y:1966:i::p:71-111 is not listed on IDEAS
    5. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    6. Vives,Xavier (ed.), 2006. "Corporate Governance," Cambridge Books, Cambridge University Press, number 9780521032032, April.
    7. Terry J. Ward & Benjamin P. Foster, 1997. "A Note on Selecting a Response Measure for Financial Distress," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 24(6), pages 869-879.
    8. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    9. Li-Chiu Chi & Tseng-Chung Tang, 2006. "Bankruptcy Prediction: Application of Logit Analysis in Export Credit Risks," Australian Journal of Management, Australian School of Business, vol. 31(1), pages 17-27, June.
    10. Foreman, R. Dean, 2003. "A logistic analysis of bankruptcy within the US local telecommunications industry," Journal of Economics and Business, Elsevier, vol. 55(2), pages 135-166.
    11. Malhotra, Manoj K. & Sharma, Subhash & Nair, Satish S., 1999. "Decision making using multiple models," European Journal of Operational Research, Elsevier, vol. 114(1), pages 1-14, April.
    12. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    13. Cochran, James J. & Darrat, Ali F. & Elkhal, Khaled, 2006. "On the bankruptcy of internet companies: An empirical inquiry," Journal of Business Research, Elsevier, vol. 59(10-11), pages 1193-1200, October.
    14. Angela J. Black & David G. McMillan, 2004. "Non-linear Predictability of Value and Growth Stocks and Economic Activity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(3-4), pages 439-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Chung Yang & Yungho Leu & Chien-Pang Lee, 2014. "A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 115-129, June.

    More about this item

    Keywords

    financial information fraud warning models; Back Propagation Neural Networks; manufacturing industry; credit policy;

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2011:i:1:p:54-71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Corina Saman). General contact details of provider: http://edirc.repec.org/data/ipacaro.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.