IDEAS home Printed from
   My bibliography  Save this article

Une condition d’invariance du modèle de régression à coefficients aléatoires


  • Fisher, Gordon

    (Université Concordia)


This paper develops an invariance condition for the random coefficients regression (RCR) model and thereby: (i) exends the results originally proposed by Rao (1965, 1967); (ii) provides a new proof of the equality of the direct and two-step estimators of the RCR model; and (iii) corrects a result claimed in McAleer (1992) for mixed models. Cet article développe une condition d’invariance du modèle de régression à coefficients aléatoires (RCA) et de cette façon permet : (i) d’étendre les résultats de Rao (1963, 1967)”; (ii) de fournir une nouvelle démonstration de l’égalité des estimateurs des moindres carrés généralisés directs et ceux en deux étapes du modèle RCA”; et (iii) de rectifier une proposition de McAleer (1992) pour les modèles mixtes.

Suggested Citation

  • Fisher, Gordon, 2004. "Une condition d’invariance du modèle de régression à coefficients aléatoires," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 405-419, Juin-Sept.
  • Handle: RePEc:ris:actuec:v:80:y:2004:i:2:p:405-419

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Kapteyn, Arie & Fiebig, Denzil G., 1981. "When are two-stage and three-stage least squares estimators identical?," Economics Letters, Elsevier, vol. 8(1), pages 53-57.
    2. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
    3. Gourieroux, Christian & Monfort, Alain, 1980. "Sufficient Linear Structures: Econometric Applications," Econometrica, Econometric Society, vol. 48(5), pages 1083-1097, July.
    4. Baksalary, Jerzy K. & Trenkler, Götz, 1989. "The Efficiency of OLS in a Seemingly Unrelated Regressions Model," Econometric Theory, Cambridge University Press, vol. 5(03), pages 463-465, December.
    5. McAleer, Michael, 1992. "Efficient Estimation: The Rao-Zyskind Condition, Kruskal's Theorem and Ordinary Least Squares," The Economic Record, The Economic Society of Australia, vol. 68(200), pages 65-72, March.
    6. Dwivedi, T. D. & Srivastava, V. K., 1978. "Optimality of least squares in the seemingly unrelated regression equation model," Journal of Econometrics, Elsevier, vol. 7(3), pages 391-395, April.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:80:y:2004:i:2:p:405-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruce Shearer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.