IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0322794.html
   My bibliography  Save this article

Professional identity and its relationships with AI readiness and interprofessional collaboration

Author

Listed:
  • Wafa’a Ta’an
  • Sadeq Damrah
  • Mohammed M Al-Hammouri
  • Brett Williams

Abstract

Background: In contemporary healthcare practices, the convergence of Artificial Intelligence (AI) and interprofessional collaboration represents a transformative era marked by unprecedented opportunities and challenges. The introduction of AI technologies is assumed to lead to changes in the nature of interprofessional collaboration that require revisiting the already established professional identity; however, research is lacking in the area. Objective: To examine professional identity and its relationships with AI readiness domains and interprofessional collaboration components. Methods: A multisite cross-sectional research design was used to recruit 512 participants from different healthcare professions in Jordan between November 14th, 2023, and February 13th, 2024. The Medical Artificial Intelligence Readiness Scale and the Readiness for Interprofessional Learning Scale were used in data collection. Data analysis included descriptive, correlation, and comparative analyses. Results: Professional identity significantly and positively correlated with artificial intelligence readiness total and subscale scores with ρ ranging from 0.37 to 0.47 (p

Suggested Citation

  • Wafa’a Ta’an & Sadeq Damrah & Mohammed M Al-Hammouri & Brett Williams, 2025. "Professional identity and its relationships with AI readiness and interprofessional collaboration," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0322794
    DOI: 10.1371/journal.pone.0322794
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322794
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0322794&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0322794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Tom Mitchell & Daniel Rock, 2018. "What Can Machines Learn, and What Does It Mean for Occupations and the Economy?," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 43-47, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    2. Enrico Maria Fenoaltea & Dario Mazzilli & Aurelio Patelli & Angelica Sbardella & Andrea Tacchella & Andrea Zaccaria & Marco Trombetti & Luciano Pietronero, 2024. "Follow the money: a startup-based measure of AI exposure across occupations, industries and regions," Papers 2412.04924, arXiv.org, revised Dec 2024.
    3. Fabio Montobbio & Jacopo Staccioli & Maria Enrica Virgillito & Marco Vivarelli, 2024. "The empirics of technology, employment and occupations: Lessons learned and challenges ahead," Journal of Economic Surveys, Wiley Blackwell, vol. 38(5), pages 1622-1655, December.
    4. Gordon H. Hanson, 2021. "Immigration and Regional Specialization in AI," NBER Working Papers 28671, National Bureau of Economic Research, Inc.
    5. Cao, Sean & Jiang, Wei & Wang, Junbo & Yang, Baozhong, 2024. "From Man vs. Machine to Man + Machine: The art and AI of stock analyses," Journal of Financial Economics, Elsevier, vol. 160(C).
    6. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    7. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    8. Ehsan Valavi & Joel Hestness & Newsha Ardalani & Marco Iansiti, 2022. "Time and the Value of Data," Papers 2203.09118, arXiv.org.
    9. Andrea Szalavetz, 2019. "Artificial Intelligence-Based Development Strategy in Dependent Market Economies - Any Room amidst Big Power Rivalry?," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 40-54.
    10. Andreas Irmen, 2021. "Automation, growth, and factor shares in the era of population aging," Journal of Economic Growth, Springer, vol. 26(4), pages 415-453, December.
    11. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2020. "AI and Jobs: Evidence from Online Vacancies," NBER Working Papers 28257, National Bureau of Economic Research, Inc.
    12. Maha Kalai & Hamdi Becha & Kamel Helali, 2024. "Effect of artificial intelligence on economic growth in European countries: a symmetric and asymmetric cointegration based on linear and non-linear ARDL approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 13(1), pages 1-37, December.
    13. Lan Chen & Yufei Ji & Xichen Yao & Hengshu Zhu, 2024. "Occupation Life Cycle," Papers 2406.15373, arXiv.org.
    14. Scholl, Keller & Hanson, Robin, 2020. "Testing the automation revolution hypothesis," Economics Letters, Elsevier, vol. 193(C).
    15. Hensvik, Lena & Skans, Oskar Nordström, 2023. "The skill-specific impact of past and projected occupational decline," Labour Economics, Elsevier, vol. 81(C).
    16. Fossen, Frank M. & Sorgner, Alina, 2021. "Digitalization of work and entry into entrepreneurship," Journal of Business Research, Elsevier, vol. 125(C), pages 548-563.
    17. Mario Benassi & Elena Grinza & Francesco Rentocchini & Laura Rondi, 2022. "Patenting in 4IR technologies and firm performance [Robots and jobs: evidence from US labor markets]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(1), pages 112-136.
    18. Seamus McGuinness & Konstantinos Pouliakas & Paul Redmond, 2023. "Skills-displacing technological change and its impact on jobs: challenging technological alarmism?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(3), pages 370-392, April.
    19. Frank M. Fossen & Trevor McLemore & Alina Sorgner, 2024. "Artificial Intelligence and Entrepreneurship," Foundations and Trends(R) in Entrepreneurship, now publishers, vol. 20(8), pages 781-904, December.
    20. Faber, Marius & Sarto, Andrés & Tabellini, Marco, 2021. "Local Shocks and Internal Migration: The Disparate Effects of Robots and Chinese Imports in the US," IZA Discussion Papers 14623, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.