IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0306344.html
   My bibliography  Save this article

Healthy city evaluation based on factor analysis—Taking cities in the Guangxi Zhuang Autonomous Region as an example

Author

Listed:
  • Hui Huang
  • Shuxin Huang
  • Shaoyao He
  • Yong Lu
  • Shuguang Deng

Abstract

As urbanization speeds up, the concept of healthy cities is receiving more focus. This article compares Chongzuo and Nanning in Guangxi with Beijing to assess the development gaps in cities in Guangxi. An indicator system for healthy cities was designed from six dimensions—healthy economy, healthy population, healthy healthcare, healthy environment, healthy facilities, and healthy transportation—and 26 secondary indicators, which were selected from 2005 to 2022, and an improved factor analysis was used to synthesize a healthy city index (HCI). The number of factors was determined by combining characteristic roots and the variance contribution rate, and the HCI was weighted using the entropy-weighted Topsis method. A comprehensive evaluation of the urban health status of these cities was conducted. The results showed that extracting six common factors had the greatest effect, with a cumulative variance contribution rate of 93.83%. Chongzuo city scored higher in the field of healthcare. The healthy environment score of Nanning was relatively high, which may be related to continuous increases in green measures. In terms of the healthy economy dimension, Beijing was far ahead. However, in recent years, the healthy economy level in Chongzuo has increased, and the GDP growth rate has ranked among the highest in Guangxi. In addition, the growth rate of healthy facilities in Nanning was relatively fast and has been greater than that in Chongzuo in recent years, which indicates that the Nanning Municipal Government believes urban construction and municipal supporting facilities are highly important. In terms of healthy transportation, Chongzuo and Nanning scored higher than Beijing. This may be because the transportation in these two cities is convenient and the traffic density is more balanced than that in Beijing, thereby reducing traffic congestion. Chongzuo had the highest score for a healthy population, and a steadily growing population provides the city with stable human resources, which helps promote urban economic and social development. Finally, relevant policy recommendations were put forwards to enhance the health level of the cities.

Suggested Citation

  • Hui Huang & Shuxin Huang & Shaoyao He & Yong Lu & Shuguang Deng, 2024. "Healthy city evaluation based on factor analysis—Taking cities in the Guangxi Zhuang Autonomous Region as an example," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-23, July.
  • Handle: RePEc:plo:pone00:0306344
    DOI: 10.1371/journal.pone.0306344
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306344
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306344&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0306344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yue & Sun, Huaping & Meng, Bo & Jin, Shunlin & Chen, Bin, 2023. "How to purchase carbon emission right optimally for energy-consuming enterprises? Analysis based on optimal stopping model," Energy Economics, Elsevier, vol. 124(C).
    2. Oviedo, Daniel & Sabogal-Cardona, Orlando, 2022. "Arguments for cycling as a mechanism for sustainable modal shifts in Bogotá," Journal of Transport Geography, Elsevier, vol. 99(C).
    3. Shuang Zhou & Chaobo Zhou, 2021. "Evaluation of China’s low-carbon city pilot policy: Evidence from 210 prefecture-level cities," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-16, October.
    4. W. Na & Z. C. Zhao, 2021. "The comprehensive evaluation method of low-carbon campus based on analytic hierarchy process and weights of entropy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9308-9319, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiazhan Gao & Guihong Hua & Baofeng Huo, 2025. "Turning “green” into “gold”: A study on the impact of green finance pilot zone policy on energy carbon emission efficiency," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(1), pages 129-143, February.
    2. Shi, Shouyuan & Yu, Tao & Lan, Chaofan & Pan, Zhenning, 2024. "Estimating the actual emission cost in an annual compliance cycle: Synergistic generation and carbon trading optimization for price-taking generation companies," Applied Energy, Elsevier, vol. 376(PA).
    3. Zhang, Haibo & Di Maria, Corrado & Ghezelayagh, Bahar & Shan, Yuli, 2024. "Climate policy in emerging economies: Evidence from China’s Low-Carbon City Pilot," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    4. Chen, Juan & Xiao, Zuoping, 2025. "Is the business cycle getting hit by climate policy uncertainty in China?," Finance Research Letters, Elsevier, vol. 71(C).
    5. Xu Zhou & Shangsheng Ren & Shuo Zhang & Jiuling Zhang & Yibo Wang, 2022. "Risk Evaluation Model of Coal Spontaneous Combustion Based on AEM-AHP-LSTM," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    6. Zhu, Bei & Nakaishi, Tomoaki & Kagawa, Shigemi, 2024. "Neighbor's profit or Neighbor's beggar? Evidence from China's low carbon cities pilot scheme on green development," Energy Policy, Elsevier, vol. 195(C).
    7. Zhang, Chengyu & Ma, Liangdong & Han, Xing & Zhao, Tianyi, 2024. "Reconstituted data-driven air conditioning energy consumption prediction system employing occupant-orientated probability model as input and swarm intelligence optimization algorithms," Energy, Elsevier, vol. 288(C).
    8. Ning Pang & Xiaoya Deng & Aihua Long & Lili Zhang & Xinchen Gu, 2022. "Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    9. Lyu, Yanwei & Xiao, Xuan & Zhang, Jinning, 2024. "Does the digital economy enhance green total factor productivity in China? The evidence from a national big data comprehensive pilot zone," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 183-196.
    10. Du, Puliang & Zhou, Bo & Yang, Miaoheng, 2024. "Carbon emission reduction contribution analysis of electricity enterprises in urban green development: A quantum spherical fuzzy sets-based decision framework," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Wendong Zhu & Dahai Li & Limin Han, 2022. "Spatial–Temporal Evolution and Sustainable Type Division of Fishery Science and Technology Innovation Efficiency in China," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    12. Weixue Lu & Hecheng Wu & Liwen Wang, 2023. "The optimal environmental regulation policy combination for high-quality economic development based on spatial Durbin and threshold regression models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7161-7187, July.
    13. Ze-qun Ding & Hong-qing Zhu & Wei-ye Zhou & Zhi-gang Bai, 2024. "Prediction analysis of carbon emission in China’s electricity industry based on the dual carbon background," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-17, May.
    14. Gulinaer Yusufu & Zhi Lu, 2024. "Can pilot free trade zones policy force the green transformation of enterprises? Evidence from listed companies in China," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-21, May.
    15. Welsh, Liam & Jaimungal, Sebastian, 2024. "Nash equilibria in greenhouse gas offset credit markets," Journal of Commodity Markets, Elsevier, vol. 35(C).
    16. Xiaoqing Ai & Jiarusi Liu & Xiaolei Yang, 2024. "Research On Effectiveness of Low-Carbon Policies on Labor Mobility," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(4), pages 1-5.
    17. de Freitas, Lucas Meyer & Blum, Salem, 2024. "An accessibility-based methodology to identify corridor speed upgrades in the European rail network," Journal of Transport Geography, Elsevier, vol. 114(C).
    18. Zhao, Kai & Gao, Yu & Liu, Xiaoman, 2025. "The impact of environmental regulation on industrial structure upgrading: A case study of low carbon city pilot policy," Energy Policy, Elsevier, vol. 197(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.