IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0303688.html
   My bibliography  Save this article

Multi-strategy modified sparrow search algorithm for hyperparameter optimization in arbitrage prediction models

Author

Listed:
  • Shenjie Cheng
  • Panke Qin
  • Baoyun Lu
  • Jinxia Yu
  • Yongli Tang
  • Zeliang Zeng
  • Sensen Tu
  • Haoran Qi
  • Bo Ye
  • Zhongqi Cai

Abstract

Deep learning models struggle to effectively capture data features and make accurate predictions because of the strong non-linear characteristics of arbitrage data. Therefore, to fully exploit the model performance, researchers have focused on network structure and hyperparameter selection using various swarm intelligence algorithms for optimization. Sparrow Search Algorithm (SSA), a classic heuristic method that simulates the sparrows’ foraging and anti-predatory behavior, has demonstrated excellent performance in various optimization problems. Hence, in this study, the Multi-Strategy Modified Sparrow Search Algorithm (MSMSSA) is applied to the Long Short-Term Memory (LSTM) network to construct an arbitrage spread prediction model (MSMSSA-LSTM). In the modified algorithm, the good point set theory, the proportion-adaptive strategy, and the improved location update method are introduced to further enhance the spatial exploration capability of the sparrow. The proposed model was evaluated using the real spread data of rebar and hot coil futures in the Chinese futures market. The obtained results showed that the mean absolute percentage error, root mean square error, and mean absolute error of the proposed model had decreased by a maximum of 58.5%, 65.2%, and 67.6% compared to several classical models. The model has high accuracy in predicting arbitrage spreads, which can provide some reference for investors.

Suggested Citation

  • Shenjie Cheng & Panke Qin & Baoyun Lu & Jinxia Yu & Yongli Tang & Zeliang Zeng & Sensen Tu & Haoran Qi & Bo Ye & Zhongqi Cai, 2024. "Multi-strategy modified sparrow search algorithm for hyperparameter optimization in arbitrage prediction models," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-24, May.
  • Handle: RePEc:plo:pone00:0303688
    DOI: 10.1371/journal.pone.0303688
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303688
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0303688&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0303688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingfeng “Wilson” Liu, 2005. "Price relations among hog, corn, and soybean meal futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(5), pages 491-514, May.
    2. Yiyang Zheng, 2022. "Neural Network and Order Flow, Technical Analysis: Predicting short-term direction of futures contract," Papers 2203.12457, arXiv.org.
    3. Sen Wu & Shuaiqi Liu & Huimin Zong & Yiyuan Sun & Wei Wang, 2023. "Research on a Prediction Model and Influencing Factors of Cross-Regional Price Differences of Rebar Spot Based on Long Short-Term Memory Network," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    4. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    5. Luka Jovanovic & Dejan Jovanovic & Nebojsa Bacanin & Ana Jovancai Stakic & Milos Antonijevic & Hesham Magd & Ravi Thirumalaisamy & Miodrag Zivkovic, 2022. "Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
    6. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Röthig & Carl Chiarella, 2007. "Investigating nonlinear speculation in cattle, corn, and hog futures markets using logistic smooth transition regression models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(8), pages 719-737, August.
    2. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    3. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    4. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    5. Helder Sebastião & Pedro Godinho & Sjur Westgaard, 2020. "Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67(si), pages 1-17, December.
    6. Hong-Yu Lin & Kuentai Chen, 2015. "The Trend of Average Unit Price in Taipei City," Research in World Economy, Research in World Economy, Sciedu Press, vol. 6(1), pages 133-142, March.
    7. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    8. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    9. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    10. Yuanlong Ge & Holly H. Wang & Sung K. Ahn, 2010. "Cotton market integration and the impact of China's new exchange rate regime," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 443-451, September.
    11. Georgi Nalbantov & Philip Hans Franses & Patrick Groenen & Jan Bioch, 2010. "Estimating the Market Share Attraction Model using Support Vector Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 688-716.
    12. T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
    13. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    14. Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    15. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    16. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    17. N. Loukeris & I. Eleftheriadis & E. Livanis, 2016. "The Portfolio Heuristic Optimisation System (PHOS)," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 627-648, December.
    18. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    19. Junjie Guo, 2025. "Integration of Wavelet Transform Convolution and Channel Attention with LSTM for Stock Price Prediction based Portfolio Allocation," Papers 2507.01973, arXiv.org, revised Jul 2025.
    20. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0303688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.