Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sangyeon Kim & Myungjoo Kang, 2019. "Financial series prediction using Attention LSTM," Papers 1902.10877, arXiv.org.
- Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
- Nebojsa Bacanin & Ruxandra Stoean & Miodrag Zivkovic & Aleksandar Petrovic & Tarik A. Rashid & Timea Bezdan, 2021. "Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
- Dijana Jovanovic & Milos Antonijevic & Milos Stankovic & Miodrag Zivkovic & Marko Tanaskovic & Nebojsa Bacanin, 2022. "Tuning Machine Learning Models Using a Group Search Firefly Algorithm for Credit Card Fraud Detection," Mathematics, MDPI, vol. 10(13), pages 1-30, June.
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
- Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shenjie Cheng & Panke Qin & Baoyun Lu & Jinxia Yu & Yongli Tang & Zeliang Zeng & Sensen Tu & Haoran Qi & Bo Ye & Zhongqi Cai, 2024. "Multi-strategy modified sparrow search algorithm for hyperparameter optimization in arbitrage prediction models," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-24, May.
- David Anderson & Margret Bjarnadottir, 2024. "As good as it gets? A new approach to estimating possible prediction performance," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-18, October.
- repec:zib:zbjtin:v:3:y:2023:i:1:p:22-28 is not listed on IDEAS
- Beibei Hu & Yunhe Cheng, 2023. "Predicting regional carbon price in China based on multi-factor HKELM by combining secondary decomposition and ensemble learning," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-24, December.
- Jiahao Chen & Jiahui Yi & Kailei Liu & Jinhua Cheng & Yin Feng & Chuandi Fang, 2023. "Copper price prediction using LSTM recurrent neural network integrated simulated annealing algorithm," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-19, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Liang Hu & Yoon‐Jin Lee, 2024. "New evidence on crude oil market efficiency," Economic Inquiry, Western Economic Association International, vol. 62(2), pages 892-916, April.
- Asit Kumar Das & Debahuti Mishra & Kaberi Das & Pradeep Kumar Mallick & Sachin Kumar & Mikhail Zymbler & Hesham El-Sayed, 2022. "Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine," Mathematics, MDPI, vol. 10(7), pages 1-33, March.
- Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
- Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
- Zhuolin Wu & Jiaqi Zhou & Xiaobing Yu, 2025. "Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition," Sustainability, MDPI, vol. 17(12), pages 1-37, June.
- Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Ata Ozkaya, 2022. "Detecting multiple-equilibria and chaos in oil prices and global commodity markets," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 11(6), pages 350-361, September.
- Thi Thu Giang Nguyen & Robert Ślepaczuk, 2022. "The efficiency of various types of input layers of LSTM model in investment strategies on S&P500 index," Working Papers 2022-29, Faculty of Economic Sciences, University of Warsaw.
- Dušan S. Radivojević & Ivan M. Lazović & Nikola S. Mirkov & Uzahir R. Ramadani & Dušan P. Nikezić, 2023. "A Comparative Evaluation of Self-Attention Mechanism with ConvLSTM Model for Global Aerosol Time Series Forecasting," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
- Zhao, Jing, 2022. "Exploring the influence of the main factors on the crude oil price volatility: An analysis based on GARCH-MIDAS model with Lasso approach," Resources Policy, Elsevier, vol. 79(C).
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta, 2025. "Effects of the climate-related sentiment on agricultural spot prices: Insights from Wavelet Rényi Entropy analysis," Energy Economics, Elsevier, vol. 142(C).
- Daniele Colombo & Francesco Toni, 2025. "Understanding Gas Price Shocks: Elasticities, Volatility and Macroeconomic Transmission," GREDEG Working Papers 2025-20, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
- Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
- Klein, Tony & Todorova, Neda, 2021. "Night trading with futures in China: The case of Aluminum and Copper," Resources Policy, Elsevier, vol. 73(C).
- Yue Liu & Hao Dong & Pierre Failler, 2019. "The Oil Market Reactions to OPEC’s Announcements," Energies, MDPI, vol. 12(17), pages 1-15, August.
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Wu, Shaojiang & Han, Wei, 2025. "Asian geopolitical risks: A key driver behind WTI-Brent spread market volatility," Finance Research Letters, Elsevier, vol. 77(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14616-:d:965369. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14616-d965369.html