IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285631.html
   My bibliography  Save this article

Copper price prediction using LSTM recurrent neural network integrated simulated annealing algorithm

Author

Listed:
  • Jiahao Chen
  • Jiahui Yi
  • Kailei Liu
  • Jinhua Cheng
  • Yin Feng
  • Chuandi Fang

Abstract

Copper is an important mineral and fluctuations in copper prices can affect the stable functioning of some countries’ economies. Policy makers, futures traders and individual investors are very concerned about copper prices. In a recent paper, we use an artificial intelligence model long short-term memory (LSTM) to predict copper prices. To improve the efficiency of long short-term memory (LSTM) model, we introduced a simulated annealing (SA) algorithm to find the best combination of hyperparameters. The feature engineering problem of the AI model is then solved by correlation analysis. Three economic indicators, West Texas Intermediate Oil Price, Gold Price and Silver Price, which are highly correlated with copper prices, were selected as inputs to be used in the training and forecasting model. Three different copper price time periods, namely 485, 363 and 242 days, were chosen for the model forecasts. The forecast errors are 0.00195, 0.0019 and 0.00097, respectively. Compared with the existing literature, the prediction results of this paper are more accurate and less error. The research in this paper provides a reliable reference for analyzing future copper price changes.

Suggested Citation

  • Jiahao Chen & Jiahui Yi & Kailei Liu & Jinhua Cheng & Yin Feng & Chuandi Fang, 2023. "Copper price prediction using LSTM recurrent neural network integrated simulated annealing algorithm," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0285631
    DOI: 10.1371/journal.pone.0285631
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285631
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285631&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.