IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0298600.html
   My bibliography  Save this article

Impacts of chemical fertilizer reduction on grain yield: A case study of China

Author

Listed:
  • Changjiang Xiong
  • Xianghao Zhao

Abstract

Reducing fertilizer usage is a crucial measure for achieving high-quality development in Chinese agriculture. Utilizing panel data from 31 Chinese provinces spanning from 2004 to 2019, this study empirically analyzes the dynamic relationship between fertilizer application and grain production, exploring the underlying mechanisms. The study findings reveal that the application of fertilizers maintains a positive impact on grain production. The two variables will demonstrate a dynamic alternation between "strong decoupling" and "retreat decoupling," suggesting that grain production may either increase or gradually decline, while fertilizer application exhibits a decreasing trend. Mechanism analysis reveals a distinct substitution relationship between fertilizer use efficiency and application quantity. Increasing fertilizer use efficiency while reducing application quantity still facilitates the stable and increased production of grains. Heterogeneity analysis indicates that the efficiency of fertilizer use has a more pronounced impact on grain yield in the eastern and western regions. Increasing fertilizer quantity is detrimental to wheat yield but has a promoting effect on corn yield. However, in the main grain-producing areas, increasing fertilizer quantity can enhance wheat yield but is unfavorable for the overall grain yield. Additionally, nitrogen fertilizer input has exceeded the optimal level compared to potassium fertilizer. Continuously increasing nitrogen fertilizer input will hinder the increase in grain yield. Therefore, there is a need to shift from the notion of "more fertilizer is better" and focus on improving fertilizer use efficiency to transition from the emphasis on "quantity" to "quality" of fertilizer application.

Suggested Citation

  • Changjiang Xiong & Xianghao Zhao, 2024. "Impacts of chemical fertilizer reduction on grain yield: A case study of China," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-26, March.
  • Handle: RePEc:plo:pone00:0298600
    DOI: 10.1371/journal.pone.0298600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298600
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0298600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paula Bustos & Bruno Caprettini & Jacopo Ponticelli, 2016. "Agricultural Productivity and Structural Transformation: Evidence from Brazil," American Economic Review, American Economic Association, vol. 106(6), pages 1320-1365, June.
    2. Pingping Fang & David Abler & Guanghua Lin & Ali Sher & Quan Quan, 2021. "Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China," Land, MDPI, vol. 10(8), pages 1-24, August.
    3. Hongyu Wang & Xiaolei Wang & Apurbo Sarkar & Fuhong Zhang, 2021. "How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    4. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    5. Wenhao Song & Chunhui Ye, 2022. "Impact of the Cultivated-Land-Management Scale on Fertilizer Reduction—Empirical Evidence from the Countryside of China," Land, MDPI, vol. 11(8), pages 1-15, July.
    6. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    7. Haixia Wu & Yan Ge, 2019. "Excessive Application of Fertilizer, Agricultural Non-Point Source Pollution, and Farmers’ Policy Choice," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    8. Yinhao Wu & Enru Wang & Changhong Miao, 2019. "Fertilizer Use in China: The Role of Agricultural Support Policies," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian-Jie Wan & Yang Tian & Man He & Yong-Qiang Zheng & Qiang Lyu & Rang-Jin Xie & Yan-Yan Ma & Lie Deng & Shi-Lai Yi, 2021. "Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield," Agriculture, MDPI, vol. 11(12), pages 1-15, November.
    2. Jianhua Ren & Hongzhen Lei & Haiyun Ren, 2022. "Livelihood Capital, Ecological Cognition, and Farmers’ Green Production Behavior," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    3. Li, Pei & Wu, JunJie & Xu, Wenchao, 2024. "The impact of industrial sulfur dioxide emissions regulation on agricultural production in China †," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    4. Yuxuan Xu & Hongbin Liu & Jie Lyu & Ying Xue, 2022. "What Influences Farmers’ Adoption of Soil Testing and Formulated Fertilization Technology in Black Soil Areas? An Empirical Analysis Based on Logistic-ISM Model," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    5. Shilei Pan & Chenhui Di & Abbas Ali Chandio & Ghulam Raza Sargani & Huaquan Zhang, 2022. "Investigating the Impact of Grain Subsidy Policy on Farmers’ Green Production Behavior: Recent Evidence from China," Agriculture, MDPI, vol. 12(8), pages 1-19, August.
    6. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    7. Storesletten, Kjetil & Zhao, Bo & Zilibotti, Fabrizio, 2020. "Business Cycle during Structural Change: Arthur Lewis’ Theory from a Neoclassical Perspective," CEPR Discussion Papers 14964, C.E.P.R. Discussion Papers.
    8. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Mohammad Nourani & Qian Long Kweh & Evelyn Shyamala Devadason & V.G.R. Chandran, 2020. "A decomposition analysis of managerial efficiency for the insurance companies: A data envelopment analysis approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(6), pages 885-901, September.
    10. Mohammad Tavassoli & Mahsa Ghandehari & Masoud Taherinia, 2023. "Rang-adjusted measure: modelling and computational aspects from internal and external perspectives for network DEA," Operational Research, Springer, vol. 23(4), pages 1-34, December.
    11. Paula Bustos & Juan Manuel Castro Vincenzi & Joan Monras & Jacopo Ponticelli, 2019. "Structural Transformation, Industrial Specialization, and Endogenous Growth," Working Papers wp2019_1906, CEMFI.
    12. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    13. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    14. Aimable Nsabimana & Patricia Funjika, 2019. "Mobile phone use, productivity and labour market in Tanzania," WIDER Working Paper Series wp-2019-71, World Institute for Development Economic Research (UNU-WIDER).
    15. Rafael Dix-Carneiro & Brian K. Kovak, 2015. "Trade Reform and Regional Dynamics: Evidence From 25 Years of Brazilian Matched Employer-Employee Data," NBER Working Papers 20908, National Bureau of Economic Research, Inc.
    16. Fajgelbaum, Pablo & Redding, Stephen, 2014. "External integration, structural transformation and economic development: evidence from Argentina," LSE Research Online Documents on Economics 60285, London School of Economics and Political Science, LSE Library.
    17. Danijela Tuljak-Suban & Patricija Bajec, 2022. "A Hybrid DEA Approach for the Upgrade of an Existing Bike-Sharing System with Electric Bikes," Energies, MDPI, vol. 15(21), pages 1-23, October.
    18. Qian Wang & Zhuoya Du & Boyu Wang & Yung‐ho Chiu & Tzu‐Han Chang, 2022. "Environmental regulation and foreign direct investment attractiveness: Evidence from China provinces," Review of Development Economics, Wiley Blackwell, vol. 26(2), pages 899-917, May.
    19. Richard Bräuer & Felix Kersting, 2023. "Trade Shocks, Labour Markets and Migration in the First Globalisation," The Economic Journal, Royal Economic Society, vol. 134(657), pages 135-164.
    20. Sunghun Lim, 2021. "Global Agricultural Value Chains and Structural Transformation," NBER Chapters, in: Risks in Agricultural Supply Chains, pages 29-57, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0298600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.