IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295130.html
   My bibliography  Save this article

Estimating emergency department crowding with stochastic population models

Author

Listed:
  • Gil Parnass
  • Osnat Levtzion-Korach
  • Renana Peres
  • Michael Assaf

Abstract

Environments such as shopping malls, airports, or hospital emergency-departments often experience crowding, with many people simultaneously requesting service. Crowding highly fluctuates, with sudden overcrowding "spikes". Past research has either focused on average behavior, used context-specific models with a large number of parameters, or machine-learning models that are hard to interpret. Here we show that a stochastic population model, previously applied to a broad range of natural phenomena, can aptly describe hospital emergency-department crowding. We test the model using data from five-year minute-by-minute emergency-department records. The model provides reliable forecasting of the crowding distribution. Overcrowding is highly sensitive to the patient arrival-flux and length-of-stay: a 10% increase in arrivals triples the probability of overcrowding events. Expediting patient exit-rate to shorten the typical length-of-stay by just 20 minutes (8.5%) cuts the probability of severe overcrowding events by 50%. Such forecasting is critical in prevention and mitigation of breakdown events. Our results demonstrate that despite its high volatility, crowding follows a dynamic behavior common to many systems in nature.

Suggested Citation

  • Gil Parnass & Osnat Levtzion-Korach & Renana Peres & Michael Assaf, 2023. "Estimating emergency department crowding with stochastic population models," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0295130
    DOI: 10.1371/journal.pone.0295130
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295130
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295130&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carri W. Chan & Vivek F. Farias & Nicholas Bambos & Gabriel J. Escobar, 2012. "Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions," Operations Research, INFORMS, vol. 60(6), pages 1323-1341, December.
    2. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    3. Eroglu, Sevgin A. & Machleit, Karen & Barr, Terri Feldman, 2005. "Perceived retail crowding and shopping satisfaction: the role of shopping values," Journal of Business Research, Elsevier, vol. 58(8), pages 1146-1153, August.
    4. Jillian A. Berry Jaeker & Anita L. Tucker, 2017. "Past the Point of Speeding Up: The Negative Effects of Workload Saturation on Efficiency and Patient Severity," Management Science, INFORMS, vol. 63(4), pages 1042-1062, April.
    5. Abo-Hamad, Waleed & Arisha, Amr, 2013. "Simulation-based framework to improve patient experience in an emergency department," European Journal of Operational Research, Elsevier, vol. 224(1), pages 154-166.
    6. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    7. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Michelle Andrews & Xueming Luo & Zheng Fang & Anindya Ghose, 2016. "Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness," Marketing Science, INFORMS, vol. 35(2), pages 218-233, March.
    9. Yong-Hong Kuo & Omar Rado & Benedetta Lupia & Janny M. Y. Leung & Colin A. Graham, 2016. "Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 120-147, June.
    10. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    11. Knut Haase & Mathias Kasper & Matthes Koch & Sven Müller, 2019. "A Pilgrim Scheduling Approach to Increase Safety During the Hajj," Operations Research, INFORMS, vol. 67(2), pages 376-406, March.
    12. Robert J. Batt & Christian Terwiesch, 2015. "Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department," Management Science, INFORMS, vol. 61(1), pages 39-59, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    2. Robert J. Batt & Christian Terwiesch, 2017. "Early Task Initiation and Other Load-Adaptive Mechanisms in the Emergency Department," Management Science, INFORMS, vol. 63(11), pages 3531-3551, November.
    3. Li, Na & Zhang, Yue & Teng, De & Kong, Nan, 2021. "Pareto optimization for control agreement in patient referral coordination," Omega, Elsevier, vol. 101(C).
    4. You-Xuan Lin & Chi-Hao Lin & Chih-Hao Lin, 2021. "A challenge for healthcare system resilience after an earthquake: The crowdedness of a first-aid hospital by non-urgent patients," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-16, April.
    5. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    6. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    7. Lien Vanbrabant & Kris Braekers & Katrien Ramaekers, 2021. "Improving emergency department performance by revising the patient–physician assignment process," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 783-845, September.
    8. Azcarate, Cristina & Esparza, Laida & Mallor, Fermin, 2020. "The problem of the last bed: Contextualization and a new simulation framework for analyzing physician decisions," Omega, Elsevier, vol. 96(C).
    9. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    10. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.
    11. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    12. Whiting, Anita & Donthu, Naveen & Baker, Andrew M., 2011. "Investigating the immediate and long-term effects of job stressors on frontline service employees," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 319-331.
    13. Pak, Anton & Gannon, Brenda & Staib, Andrew, 2020. "Forecasting Waiting Time to Treatment for Emergency Department Patients," OSF Preprints d25se, Center for Open Science.
    14. Zhou, Yuyang & Wang, Peiyu & Zheng, Shuyan & Zhao, Minhe & Lam, William H.K. & Chen, Anthony & Sze, N.N. & Chen, Yanyan, 2024. "Modeling dynamic travel mode choices using cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    15. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
    17. Pyddoke, Roger, 2020. "Analysis of daily variation in bus occupancy rates for city-buses in Uppsala and optimal supply," Working Papers 2020:8, Swedish National Road & Transport Research Institute (VTI).
    18. Bolandifar, Ehsan & DeHoratius, Nicole & Olsen, Tava, 2023. "Modeling abandonment behavior among patients," European Journal of Operational Research, Elsevier, vol. 306(1), pages 243-254.
    19. Huiyin Ouyang & Nilay Tanık Argon & Serhan Ziya, 2020. "Allocation of Intensive Care Unit Beds in Periods of High Demand," Operations Research, INFORMS, vol. 68(2), pages 591-608, March.
    20. Mirko Kremer & Francis de Véricourt, 2022. "Mismanaging diagnostic accuracy under congestion," ESMT Research Working Papers ESMT-22-01, ESMT European School of Management and Technology.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.