IDEAS home Printed from
   My bibliography  Save this article

Simulation-based framework to improve patient experience in an emergency department


  • Abo-Hamad, Waleed
  • Arisha, Amr


The global economic crisis has a significant impact on healthcare resource provision worldwide. The management of limited healthcare resources is further challenged by the high level of uncertainty in demand, which can lead to unbalanced utilization of the available resources and a potential deterioration of patient satisfaction in terms of longer waiting times and perceived reduced quality of services. Therefore, healthcare managers require timely and accurate tools to optimize resource utility in a complex and ever-changing patient care process. An interactive simulation-based decision support framework is presented in this paper for healthcare process improvement. Complexity and different levels of variability within the process are incorporated into the process modeling phase, followed by developing a simulation model to examine the impact of potential alternatives. As a performance management tool, balanced scorecard (BSC) is incorporated within the framework to support continual and sustainable improvement by using strategic-linked performance measures and actions. These actions are evaluated by the simulation model developed, whilst the trade-off between objectives, though somewhat conflicting, is analysed by a preference model. The preference model is designed in an interactive and iterative process considering decision makers preferences regarding the selected key performance indicators (KPIs). A detailed implementation of the framework is demonstrated on an emergency department (ED) of an adult teaching hospital in north Dublin, Ireland. The results show that the unblocking of ED outflows by in-patient bed management is more effective than increasing only the ED physical capacity or the ED workforce.

Suggested Citation

  • Abo-Hamad, Waleed & Arisha, Amr, 2013. "Simulation-based framework to improve patient experience in an emergency department," European Journal of Operational Research, Elsevier, vol. 224(1), pages 154-166.
  • Handle: RePEc:eee:ejores:v:224:y:2013:i:1:p:154-166
    DOI: 10.1016/j.ejor.2012.07.028

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kim, Soung-Hie & Jang, Ki-Jin, 2002. "Designing performance analysis and IDEF0 for enterprise modelling in BPR," International Journal of Production Economics, Elsevier, vol. 76(2), pages 121-133, March.
    2. Kim, Seung-Chul & Horowitz, Ira & Young, Karl K. & Buckley, Thomas A., 1999. "Analysis of capacity management of the intensive care unit in a hospital," European Journal of Operational Research, Elsevier, vol. 115(1), pages 36-46, May.
    3. James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Jyrki Wallenius & Stanley Zionts, 1992. "Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next Ten Years," Management Science, INFORMS, vol. 38(5), pages 645-654, May.
    4. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    5. David Sinreich & Ola Jabali, 2007. "Staggered work shifts: a way to downsize and restructure an emergency department workforce yet maintain current operational performance," Health Care Management Science, Springer, vol. 10(3), pages 293-308, September.
    6. Robert S. Dittus & Robert W. Klein & David J. DeBrota & Mark A. Dame & John F. Fitzgerald, 1996. "Medical Resident Work Schedules: Design and Evaluation by Stimulation Modeling," Management Science, INFORMS, vol. 42(6), pages 891-906, June.
    7. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    8. Liberatore, Matthew J. & Nydick, Robert L., 2008. "The analytic hierarchy process in medical and health care decision making: A literature review," European Journal of Operational Research, Elsevier, vol. 189(1), pages 194-207, August.
    9. Wierzbicki, Andrzej P., 2007. "Modelling as a way of organising knowledge," European Journal of Operational Research, Elsevier, vol. 176(1), pages 610-635, January.
    10. Oddoye, J.P. & Jones, D.F. & Tamiz, M. & Schmidt, P., 2009. "Combining simulation and goal programming for healthcare planning in a medical assessment unit," European Journal of Operational Research, Elsevier, vol. 193(1), pages 250-261, February.
    11. Litvak, Nelly & van Rijsbergen, Marleen & Boucherie, Richard J. & van Houdenhoven, Mark, 2008. "Managing the overflow of intensive care patients," European Journal of Operational Research, Elsevier, vol. 185(3), pages 998-1010, March.
    12. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    13. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kaushal, Arjun & Zhao, Yuancheng & Peng, Qingjin & Strome, Trevor & Weldon, Erin & Zhang, Michael & Chochinov, Alecs, 2015. "Evaluation of fast track strategies using agent-based simulation modeling to reduce waiting time in a hospital emergency department," Socio-Economic Planning Sciences, Elsevier, vol. 50(C), pages 18-31.
    2. repec:eee:ejores:v:261:y:2017:i:3:p:1110-1124 is not listed on IDEAS
    3. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    4. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    5. Rashwan, Wael & Abo-Hamad, Waleed & Arisha, Amr, 2015. "A system dynamics view of the acute bed blockage problem in the Irish healthcare system," European Journal of Operational Research, Elsevier, vol. 247(1), pages 276-293.
    6. Golmohammadi, Davood, 2016. "Predicting hospital admissions to reduce emergency department boarding," International Journal of Production Economics, Elsevier, vol. 182(C), pages 535-544.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:224:y:2013:i:1:p:154-166. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.