IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283933.html

Application of quantum computing to a linear non-Gaussian acyclic model for novel medical knowledge discovery

Author

Listed:
  • Hideaki Kawaguchi

Abstract

Recently, the utilization of real-world medical data collected from clinical sites has been attracting attention. Especially as the number of variables in real-world medical data increases, causal discovery becomes more and more effective. On the other hand, it is necessary to develop new causal discovery algorithms suitable for small data sets for situations where sample sizes are insufficient to detect reasonable causal relationships, such as rare diseases and emerging infectious diseases. This study aims to develop a new causal discovery algorithm suitable for a small number of real-world medical data using quantum computing, one of the emerging information technologies attracting attention for its application in machine learning. In this study, a new algorithm that applies the quantum kernel to a linear non-Gaussian acyclic model, one of the causal discovery algorithms, is developed. Experiments on several artificial data sets showed that the new algorithm proposed in this study was more accurate than existing methods with the Gaussian kernel under various conditions in the low-data regime. When the new algorithm was applied to real-world medical data, a case was confirmed in which the causal structure could be correctly estimated even when the amount of data was small, which was not possible with existing methods. Furthermore, the possibility of implementing the new algorithm on real quantum hardware was discussed. This study suggests that the new proposed algorithm using quantum computing might be a good choice among the causal discovery algorithms in the low-data regime for novel medical knowledge discovery.

Suggested Citation

  • Hideaki Kawaguchi, 2023. "Application of quantum computing to a linear non-Gaussian acyclic model for novel medical knowledge discovery," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-21, April.
  • Handle: RePEc:plo:pone00:0283933
    DOI: 10.1371/journal.pone.0283933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harri Helajärvi & Tom Rosenström & Katja Pahkala & Mika Kähönen & Terho Lehtimäki & Olli J Heinonen & Mervi Oikonen & Tuija Tammelin & Jorma S A Viikari & Olli T Raitakari, 2014. "Exploring Causality between TV Viewing and Weight Change in Young and Middle-Aged Adults. The Cardiovascular Risk in Young Finns Study," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-11, July.
    2. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    3. Hsin-Yuan Huang & Michael Broughton & Masoud Mohseni & Ryan Babbush & Sergio Boixo & Hartmut Neven & Jarrod R. McClean, 2021. "Power of data in quantum machine learning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Wößmann, 2021. "Mentoring verbessert die Arbeitsmarktchancen von stark benachteiligten Jugendlichen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 74(02), pages 31-38, February.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Bonesrønning, Hans & Finseraas, Henning & Hardoy, Ines & Iversen, Jon Marius Vaag & Nyhus, Ole Henning & Opheim, Vibeke & Salvanes, Kari Vea & Sandsør, Astrid Marie Jorde & Schøne, Pål, 2022. "Small-group instruction to improve student performance in mathematics in early grades: Results from a randomized field experiment," Journal of Public Economics, Elsevier, vol. 216(C).
    6. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    7. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    8. Hairu Wang & Yukun Liu & Haiying Zhou, 2025. "Score test for unconfoundedness under a logistic treatment assignment model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 517-533, August.
    9. Satarupa Bhattacharjee & Bing Li & Xiao Wu & Lingzhou Xue, 2025. "Doubly robust estimation of causal effects for random object outcomes with continuous treatments," Papers 2506.22754, arXiv.org.
    10. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    11. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    12. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    13. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    14. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    15. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    16. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices.” (Adam," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    17. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    18. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    19. Steffen Andersen & Philippe d'Astous & Jimmy Martínez-Correa & Stephen H. Shore, 2018. "Responses to Savings Commitments: Evidence from Mortgage Run-offs," Cahiers de recherche / Working Papers 1, Institut sur la retraite et l'épargne / Retirement and Savings Institute.
    20. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.