IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246785.html
   My bibliography  Save this article

Leveraging insurance customer data to characterize socioeconomic indicators of Swiss municipalities

Author

Listed:
  • Lorenzo Donadio
  • Rossano Schifanella
  • Claudia R Binder
  • Emanuele Massaro

Abstract

The availability of reliable socioeconomic data is critical for the design of urban policies and the implementation of location-based services; however, often, their temporal and geographical coverage remain scarce. We explore the potential for insurance customers data to predict socioeconomic indicators of Swiss municipalities. First, we define a features space by aggregating at city-level individual customer data along several behavioral and user profile dimensions. Second, we collect official statistics shared by the Swiss authorities on a wide spectrum of categories: Population, Transportation, Work, Space and Territory, Housing, and Economy. Third, we adopt two spatial regression models exploring both global and local geographical dependencies to investigate their predictability. Results show consistently a correlation between insurance customer characteristics and official socioeconomic indexes. Performance fluctuates depending on the category, with values of R2 > 0.6 for several target variables using a 5-fold cross validation. As a case study, we focus on predicting the percentage of the population using public transportation and we discuss the implications on a regional scope. We believe that this methodology can support official statistical offices and it could open up new opportunities for the characterization of socioeconomic traits at highly-granular spatial and temporal scales.

Suggested Citation

  • Lorenzo Donadio & Rossano Schifanella & Claudia R Binder & Emanuele Massaro, 2021. "Leveraging insurance customer data to characterize socioeconomic indicators of Swiss municipalities," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
  • Handle: RePEc:plo:pone00:0246785
    DOI: 10.1371/journal.pone.0246785
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246785
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246785&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. -, 2014. "A World that Counts: Mobilising the Data Revolution for Sustainable Development," Coediciones, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 40319 edited by United Nations, September.
    3. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    4. Dolan Antenucci & Michael Cafarella & Margaret Levenstein & Christopher Ré & Matthew D. Shapiro, 2014. "Using Social Media to Measure Labor Market Flows," NBER Working Papers 20010, National Bureau of Economic Research, Inc.
    5. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    6. Steve MacFeely, 2019. "The Big (data) Bang: Opportunities and Challenges for Compiling SDG Indicators," Global Policy, London School of Economics and Political Science, vol. 10(S1), pages 121-133, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatehkia, Masoomali & Kashyap, Ridhi & Weber, Ingmar, 2018. "Using Facebook ad data to track the global digital gender gap," World Development, Elsevier, vol. 107(C), pages 189-209.
    2. Lahiri, Kajal & Monokroussos, George & Zhao, Yongchen, 2013. "The yield spread puzzle and the information content of SPF forecasts," Economics Letters, Elsevier, vol. 118(1), pages 219-221.
    3. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    4. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    5. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    6. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    7. Cepni, Oguzhan & Gul, Selcuk & Gupta, Rangan, 2020. "Local currency bond risk premia of emerging markets: The role of local and global factors," Finance Research Letters, Elsevier, vol. 33(C).
    8. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    9. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
    10. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    11. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, March.
    12. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    13. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    14. James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
    15. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    16. Mr. Serhat Solmaz & Marzie Taheri Sanjani, 2015. "How External Factors Affect Domestic Economy: Nowcasting an Emerging Market," IMF Working Papers 2015/269, International Monetary Fund.
    17. Carlo Altavilla & Domenico Giannone, 2017. "The Effectiveness of Non‐Standard Monetary Policy Measures: Evidence from Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 952-964, August.
    18. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    19. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    20. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.