IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0169299.html
   My bibliography  Save this article

Dynamic Portfolio Strategy Using Clustering Approach

Author

Listed:
  • Fei Ren
  • Ya-Nan Lu
  • Sai-Ping Li
  • Xiong-Fei Jiang
  • Li-Xin Zhong
  • Tian Qiu

Abstract

The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.

Suggested Citation

  • Fei Ren & Ya-Nan Lu & Sai-Ping Li & Xiong-Fei Jiang & Li-Xin Zhong & Tian Qiu, 2017. "Dynamic Portfolio Strategy Using Clustering Approach," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
  • Handle: RePEc:plo:pone00:0169299
    DOI: 10.1371/journal.pone.0169299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169299
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0169299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Yue-Hua Dai & Wen-Jie Xie & Zhi-Qiang Jiang & George J. Jiang & Wei-Xing Zhou, 2016. "Correlation structure and principal components in the global crude oil market," Empirical Economics, Springer, vol. 51(4), pages 1501-1519, December.
    3. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    4. Drożdż, S & Grümmer, F & Górski, A.Z & Ruf, F & Speth, J, 2000. "Dynamics of competition between collectivity and noise in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 440-449.
    5. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & N. Mantegna, Rosario, 2003. "Degree stability of a minimum spanning tree of price return and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 66-73.
    6. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    7. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    8. Thorbecke, Willem, 1997. "On Stock Market Returns and Monetary Policy," Journal of Finance, American Finance Association, vol. 52(2), pages 635-654, June.
    9. Miralles-Marcelo, José Luis & Miralles-Quirós, María del Mar & Miralles-Quirós, José Luis, 2015. "Improving international diversification benefits for US investors," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 64-76.
    10. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    11. Kotkatvuori-Örnberg, Juha & Nikkinen, Jussi & Äijö, Janne, 2013. "Stock market correlations during the financial crisis of 2008–2009: Evidence from 50 equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 70-78.
    12. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    13. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    14. Hendrik Scholz, 2007. "Refinements to the Sharpe ratio: Comparing alternatives for bear markets," Journal of Asset Management, Palgrave Macmillan, vol. 7(5), pages 347-357, January.
    15. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    16. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    17. Ferreira, Miguel A. & Gama, Paulo M., 2007. "Does sovereign debt ratings news spill over to international stock markets?," Journal of Banking & Finance, Elsevier, vol. 31(10), pages 3162-3182, October.
    18. Yang, Chunxia & Zhu, Xueshuai & Li, Qian & Chen, Yanhua & Deng, Qiangqiang, 2014. "Research on the evolution of stock correlation based on maximal spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 1-18.
    19. X. F. Jiang & T. T. Chen & B. Zheng, 2014. "Structure of local interactions in complex financial dynamics," Papers 1406.0070, arXiv.org.
    20. Zhi-Qiang Jiang & Wei-Xing Zhou, 2011. "Multifractal detrending moving average cross-correlation analysis," Papers 1103.2577, arXiv.org, revised Mar 2011.
    21. Bradford Case & Yawei Yang & Yildiray Yildirim, 2012. "Dynamic Correlations Among Asset Classes: REIT and Stock Returns," The Journal of Real Estate Finance and Economics, Springer, vol. 44(3), pages 298-318, April.
    22. Juan Gabriel Brida & Wiston Adrian Risso, 2007. "Dynamics And Structure Of The Main Italian Companies," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(11), pages 1783-1793.
    23. Fei Ren & Wei-Xing Zhou, 2014. "Dynamic Evolution of Cross-Correlations in the Chinese Stock Market," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.
    24. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    25. Tang, Yong & Luo, Yong & Xiong, Jie & Zhao, Fei & Zhang, Yi-Cheng, 2013. "Impact of monetary policy changes on the Chinese monetary and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4435-4449.
    26. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    27. N.C. Suganya & G.A. Pai, 2012. "Wavelet evolutionary network for complex-constrained portfolio rebalancing," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(7), pages 1367-1385.
    28. Kasman, Saadet & Vardar, Gülin & Tunç, Gökçe, 2011. "The impact of interest rate and exchange rate volatility on banks' stock returns and volatility: Evidence from Turkey," Economic Modelling, Elsevier, vol. 28(3), pages 1328-1334, May.
    29. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    30. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    31. Bomfim, Antulio N., 2003. "Pre-announcement effects, news effects, and volatility: Monetary policy and the stock market," Journal of Banking & Finance, Elsevier, vol. 27(1), pages 133-151, January.
    32. Sun, Xuelian & Liu, Zixian, 2016. "Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 667-679.
    33. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    34. Daniel J. Fenn & Mason A. Porter & Stacy Williams & Mark McDonald & Neil F. Johnson & Nick S. Jones, 2010. "Temporal Evolution of Financial Market Correlations," Papers 1011.3225, arXiv.org, revised May 2011.
    35. Daly, J. & Crane, M. & Ruskin, H.J., 2008. "Random matrix theory filters in portfolio optimisation: A stability and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4248-4260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yanli & Li, Huajiao & Guan, Jianhe & Liu, Nairong, 2019. "Similarities between stock price correlation networks and co-main product networks: Threshold scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 66-77.
    2. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    3. Herteliu, Claudiu & Levantesi, Susanna & Rotundo, Giulia, 2021. "Network analysis of pension funds investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    4. Sun, Bowen & Li, Huajiao & An, Pengli & Wang, Ze, 2020. "Dynamic energy stock selection based on shareholders’ coholding network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Roman Mestre, 2023. "Stock profiling using time–frequency-varying systematic risk measure," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
    6. Fernando García & Jairo González-Bueno & Francisco Guijarro & Javier Oliver, 2020. "A multiobjective credibilistic portfolio selection model. Empirical study in the Latin American integrated market," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 1027-1046, December.
    7. Dimitar Kitanovski & Igor Mishkovski & Viktor Stojkoski & Miroslav Mirchev, 2024. "Network-based diversification of stock and cryptocurrency portfolios," Papers 2408.11739, arXiv.org.
    8. Xiaoguang Huo & Feng Fu, 2017. "Risk-Aware Multi-Armed Bandit Problem with Application to Portfolio Selection," Papers 1709.04415, arXiv.org.
    9. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    10. Han Yang & Ming-hui Wang & Nan-jing Huang, 2021. "The $$\alpha$$ α -Tail Distance with an Application to Portfolio Optimization Under Different Market Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1195-1224, December.
    11. Lu, Ya-Nan & Li, Sai-Ping & Zhong, Li-Xin & Jiang, Xiong-Fei & Ren, Fei, 2018. "A clustering-based portfolio strategy incorporating momentum effect and market trend prediction," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 1-15.
    12. Fazlollah Soleymani & Mahdi Vasighi, 2022. "Efficient portfolio construction by means of CVaR and k‐means++ clustering analysis: Evidence from the NYSE," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3679-3693, July.
    13. Imran Ansari & Charu Sharma & Akshay Agrawal & Niteesh Sahni, 2024. "A novel portfolio construction strategy based on the core-periphery profile of stocks," Papers 2405.12993, arXiv.org.
    14. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    2. Lu, Ya-Nan & Li, Sai-Ping & Zhong, Li-Xin & Jiang, Xiong-Fei & Ren, Fei, 2018. "A clustering-based portfolio strategy incorporating momentum effect and market trend prediction," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 1-15.
    3. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    4. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    5. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    6. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    7. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    8. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    10. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    11. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    13. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    14. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    15. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    17. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    18. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    19. Yin, Yi & Shang, Pengjian, 2013. "Modified DFA and DCCA approach for quantifying the multiscale correlation structure of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6442-6457.
    20. Nie, Chun-Xiao & Song, Fu-Tie, 2019. "Global Rényi index of the distance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 902-915.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0169299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.