IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008635.html
   My bibliography  Save this article

Building clone-consistent ecosystem models

Author

Listed:
  • Gerrit Ansmann
  • Tobias Bollenbach

Abstract

Many ecological studies employ general models that can feature an arbitrary number of populations. A critical requirement imposed on such models is clone consistency: If the individuals from two populations are indistinguishable, joining these populations into one shall not affect the outcome of the model. Otherwise a model produces different outcomes for the same scenario. Using functional analysis, we comprehensively characterize all clone-consistent models: We prove that they are necessarily composed from basic building blocks, namely linear combinations of parameters and abundances. These strong constraints enable a straightforward validation of model consistency. Although clone consistency can always be achieved with sufficient assumptions, we argue that it is important to explicitly name and consider the assumptions made: They may not be justified or limit the applicability of models and the generality of the results obtained with them. Moreover, our insights facilitate building new clone-consistent models, which we illustrate for a data-driven model of microbial communities. Finally, our insights point to new relevant forms of general models for theoretical ecology. Our framework thus provides a systematic way of comprehending ecological models, which can guide a wide range of studies.Author summary: Mathematical models of population dynamics are an important tool to advance our understanding of ecosystems, which can be relevant for environmental, clinical, and industrial applications. One sanity check for such models is to virtually split a population into two with identical properties – allegorically, we paint half the individuals of the population in a different color. As we do not change the ecological situation, the outcome of the model should not change either; we call this feature clone consistency. We investigated the mathematical properties of clone-consistent models and deduced simple rules for their form. These rules allow to easily check clone consistency in existing models and ensure it when building new ones. The resulting framework can guide researchers in building models for specific ecosystems and in investigating general properties of ecosystems. We showcase our approach by applying it to models for bacterial communities causing urinary-tract infections. We further discuss that clone inconsistency, which occurs in several prominent models, reflects strong, often implicit, assumptions and it is important to check whether these are justified. Such assumptions may diminish the applicability of these models and the generality of results obtained with them.

Suggested Citation

  • Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
  • Handle: RePEc:plo:pcbi00:1008635
    DOI: 10.1371/journal.pcbi.1008635
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008635
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008635&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Solow Andrew & Polasky Stephen & Broadus James, 1993. "On the Measurement of Biological Diversity," Journal of Environmental Economics and Management, Elsevier, vol. 24(1), pages 60-68, January.
    2. Jacopo Grilli & György Barabás & Matthew J. Michalska-Smith & Stefano Allesina, 2017. "Higher-order interactions stabilize dynamics in competitive network models," Nature, Nature, vol. 548(7666), pages 210-213, August.
    3. Steven Polasky & Andrew R. Solow, 1993. "Option Value, Gallot's Inequality, And The Measurement Of Biological Diversity," Boston College Working Papers in Economics 241, Boston College Department of Economics.
    4. Uchida, Satoshi & Drossel, Barbara & Brose, Ulrich, 2007. "The structure of food webs with adaptive behaviour," Ecological Modelling, Elsevier, vol. 206(3), pages 263-276.
    5. Eric D. Kelsic & Jeffrey Zhao & Kalin Vetsigian & Roy Kishony, 2015. "Counteraction of antibiotic production and degradation stabilizes microbial communities," Nature, Nature, vol. 521(7553), pages 516-519, May.
    6. Wade, M.J. & Harmand, J. & Benyahia, B. & Bouchez, T. & Chaillou, S. & Cloez, B. & Godon, J.-J. & Moussa Boudjemaa, B. & Rapaport, A. & Sari, T. & Arditi, R. & Lobry, C., 2016. "Perspectives in mathematical modelling for microbial ecology," Ecological Modelling, Elsevier, vol. 321(C), pages 64-74.
    7. Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
    8. Eyal Bairey & Eric D. Kelsic & Roy Kishony, 2016. "High-order species interactions shape ecosystem diversity," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    9. Editors The, 2007. "From the Editors," Basic Income Studies, De Gruyter, vol. 2(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    2. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Chen, Shiliang & Liu, Xiang & He, Qiang & Zhou, Shurong, 2022. "Higher-order interactions on disease transmission can reverse the dilution effect or weaken the amplification effect to unimodal pattern," Ecological Modelling, Elsevier, vol. 474(C).
    4. Courtois, Pierre & Figuières, Charles & Mulier, Chloe, 2019. "A Tale of Two Diversities," Ecological Economics, Elsevier, vol. 159(C), pages 133-147.
    5. Perry, Neil, 2010. "The ecological importance of species and the Noah's Ark problem," Ecological Economics, Elsevier, vol. 69(3), pages 478-485, January.
    6. Ricotta, Carlo & Szeidl, Laszlo, 2009. "Diversity partitioning of Rao’s quadratic entropy," Theoretical Population Biology, Elsevier, vol. 76(4), pages 299-302.
    7. Paul, Prosenjit & Kar, T.K., 2016. "Impacts of invasive species on the sustainable use of native exploited species," Ecological Modelling, Elsevier, vol. 340(C), pages 106-115.
    8. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Bartkowski, Bartosz & Lienhoop, Nele & Hansjürgens, Bernd, 2015. "Capturing the complexity of biodiversity: A critical review of economic valuation studies of biological diversity," Ecological Economics, Elsevier, vol. 113(C), pages 1-14.
    10. Simpson, R. David, 2002. "Definitions of Biodiversity and Measures of Its Value," Discussion Papers 10551, Resources for the Future.
    11. Yoshida, Jun & Kono, Tatsuhito, 2022. "Cities and biodiversity: Spatial efficiency of land use," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 685-705.
    12. Martin L. Weitzman, 1998. "The Noah's Ark Problem," Econometrica, Econometric Society, vol. 66(6), pages 1279-1298, November.
    13. Gerber, Nicolas, 2011. "Biodiversity measures based on species-level dissimilarities: A methodology for assessment," Ecological Economics, Elsevier, vol. 70(12), pages 2275-2281.
    14. Pavoine, Sandrine & Bonsall, Michael B., 2009. "Biological diversity: Distinct distributions can lead to the maximization of Rao’s quadratic entropy," Theoretical Population Biology, Elsevier, vol. 75(2), pages 153-163.
    15. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    16. Shang, Yilun, 2022. "Sombor index and degree-related properties of simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    17. Papanikolaou, Nikos & Lambiotte, Renaud & Vaccario, Giacomo, 2023. "Fragmentation from group interactions: A higher-order adaptive voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Stephen Polasky & Jeffrey D. Camm & Brian Garber-Yonts, 2001. "Selecting Biological Reserves Cost-Effectively: An Application to Terrestrial Vertebrate Conservation in Oregon," Land Economics, University of Wisconsin Press, vol. 77(1), pages 68-78.
    19. Okamura, Keisuke, 2020. "Affinity-based extension of non-extensive entropy and statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    20. G. Andrew Karolyi & John Tobin‐de la Puente, 2023. "Biodiversity finance: A call for research into financing nature," Financial Management, Financial Management Association International, vol. 52(2), pages 231-251, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.