IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v546y2017i7656d10.1038_nature22898.html
   My bibliography  Save this article

Beyond pairwise mechanisms of species coexistence in complex communities

Author

Listed:
  • Jonathan M. Levine

    (Institute of Integrative Biology, ETH Zürich)

  • Jordi Bascompte

    (University of Zurich)

  • Peter B. Adler

    (Utah State University, Logan)

  • Stefano Allesina

    (University of Chicago)

Abstract

The tremendous diversity of species in ecological communities has motivated a century of research into the mechanisms that maintain biodiversity. However, much of this work examines the coexistence of just pairs of competitors. This approach ignores those mechanisms of coexistence that emerge only in diverse competitive networks. Despite the potential for these mechanisms to create conditions under which the loss of one competitor triggers the loss of others, we lack the knowledge needed to judge their importance for coexistence in nature. Progress requires borrowing insight from the study of multitrophic interaction networks, and coupling empirical data to models of competition.

Suggested Citation

  • Jonathan M. Levine & Jordi Bascompte & Peter B. Adler & Stefano Allesina, 2017. "Beyond pairwise mechanisms of species coexistence in complex communities," Nature, Nature, vol. 546(7656), pages 56-64, June.
  • Handle: RePEc:nat:nature:v:546:y:2017:i:7656:d:10.1038_nature22898
    DOI: 10.1038/nature22898
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22898
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    2. Chen, Shiliang & Liu, Xiang & He, Qiang & Zhou, Shurong, 2022. "Higher-order interactions on disease transmission can reverse the dilution effect or weaken the amplification effect to unimodal pattern," Ecological Modelling, Elsevier, vol. 474(C).
    3. Muyinda, Nathan & Baetens, Jan M. & De Baets, Bernard & Rao, Shodhan, 2020. "Using intransitive triads to determine final species richness of competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Feng Shi & James Evans, 2023. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Shang, Yilun, 2022. "Sombor index and degree-related properties of simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    6. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. David García-Callejas & Ignasi Bartomeus & Oscar Godoy, 2021. "The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Jing Yang & Xiya Wang & Carlos P. Carmona & Xihua Wang & Guochun Shen, 2024. "Inverse relationship between species competitiveness and intraspecific trait variability may enable species coexistence in experimental seedling communities," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Shengman Lyu & Jake M. Alexander, 2022. "Competition contributes to both warm and cool range edges," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    12. Papanikolaou, Nikos & Lambiotte, Renaud & Vaccario, Giacomo, 2023. "Fragmentation from group interactions: A higher-order adaptive voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    13. Térence Legrand & Anne Chenuil & Enrico Ser-Giacomi & Sophie Arnaud-Haond & Nicolas Bierne & Vincent Rossi, 2022. "Spatial coalescent connectivity through multi-generation dispersal modelling predicts gene flow across marine phyla," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Kovalenko, K. & Romance, M. & Vasilyeva, E. & Aleja, D. & Criado, R. & Musatov, D. & Raigorodskii, A.M. & Flores, J. & Samoylenko, I. & Alfaro-Bittner, K. & Perc, M. & Boccaletti, S., 2022. "Vector centrality in hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Jennifer K Costanza & John W Coulston & David N Wear, 2017. "An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-24, September.
    16. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Muhammad Awais Rasool & Muhammad Azher Hassan & Xiaobo Zhang & Qing Zeng & Yifei Jia & Li Wen & Guangchun Lei, 2021. "Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    18. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:546:y:2017:i:7656:d:10.1038_nature22898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.