IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Biodiversity measures based on species-level dissimilarities: A methodology for assessment

  • Gerber, Nicolas

Biodiversity is widely recognized as a valuable natural asset to conserve. Yet biodiversity is often reported to be declining worldwide. Biodiversity measures can help evaluating it and conserving it, but need to be clearly defined and assessed. In this paper, I review several biodiversity measures and develop a new one, all based on a matrix of species-level dissimilarity data. The data can be used in its raw form, regardless of its origin (e.g. studies of morphological traits, DNA hybridization experiments…) or of any graphical representation. Then, I propose a two-step assessment of the measures. First, I assess them in terms of their deviation from a strict additive law determining the contribution of each species to the diversity of the set in an ideal setting. This setting refers to a case where the data exactly determines the hierarchical ordering of the species. Second, I assess the measures based on their compliance with a list of axioms. These axioms reflect basic mathematical properties regarded as desirable for diversity measures, such as their monotonicity in species and dissimilarities. Finally, I show the importance of applying the new quantitative assessment and the axiomatic approach together when selecting a dissimilarity-based diversity measure.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0921800911003466
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Ecological Economics.

Volume (Year): 70 (2011)
Issue (Month): 12 ()
Pages: 2275-2281

as
in new window

Handle: RePEc:eee:ecolec:v:70:y:2011:i:12:p:2275-2281
DOI: 10.1016/j.ecolecon.2011.08.013
Contact details of provider: Web page: http://www.elsevier.com/locate/ecolecon

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Li, Chuan-Zhong & L Fgren, Karl-Gustaf, 1998. "A dynamic model of biodiversity preservation," Environment and Development Economics, Cambridge University Press, vol. 3(02), pages 157-172, May.
  2. Martin L. Weitzman, 1993. "What to Preserve? An Application of Diversity Theory to Crane Conservation," The Quarterly Journal of Economics, Oxford University Press, vol. 108(1), pages 157-183.
  3. Steven Polasky & Andrew R. Solow, 1993. "Option Value, Gallot's Inequality, And The Measurement Of Biological Diversity," Boston College Working Papers in Economics 241, Boston College Department of Economics.
  4. van der Heide, C. Martijn & van den Bergh, Jeroen C.J.M. & van Ierland, Ekko C., 2005. "Extending Weitzman's economic ranking of biodiversity protection: combining ecological and genetic considerations," Ecological Economics, Elsevier, vol. 55(2), pages 218-223, November.
  5. Stephen Polasky & Andrew Solow & James Broadus, 1993. "Searching for uncertain benefits and the conservation of biological diversity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 3(2), pages 171-181, April.
  6. William Brock & Anastasios Xepapadeas, 2001. "Valuing Biodiversity from an Economic Perspective: A Unified Economic, Ecological and Genetic Approach," Working Papers 0102, University of Crete, Department of Economics.
  7. Martin L. Weitzman, 1992. "On Diversity," The Quarterly Journal of Economics, Oxford University Press, vol. 107(2), pages 363-405.
  8. Eiswerth, Mark E. & Haney, J. Christopher, 1992. "Allocating conservation expenditures: accounting for inter-species genetic distinctiveness," Ecological Economics, Elsevier, vol. 5(3), pages 235-249, June.
  9. Martin L. Weitzman, 1998. "The Noah's Ark Problem," Econometrica, Econometric Society, vol. 66(6), pages 1279-1298, November.
  10. Eiswerth, Mark E. & Haney, J. Christopher, 2001. "Maximizing conserved biodiversity: why ecosystem indicators and thresholds matter," Ecological Economics, Elsevier, vol. 38(2), pages 259-274, August.
  11. John A. C. Conybeare, 1992. "A Portfolio Diversification Model of Alliances," Journal of Conflict Resolution, Peace Science Society (International), vol. 36(1), pages 53-85, March.
  12. Solow Andrew & Polasky Stephen & Broadus James, 1993. "On the Measurement of Biological Diversity," Journal of Environmental Economics and Management, Elsevier, vol. 24(1), pages 60-68, January.
  13. Weitzman, M.L., 1992. "Diversity Functions," Harvard Institute of Economic Research Working Papers 1610, Harvard - Institute of Economic Research.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:70:y:2011:i:12:p:2275-2281. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.