IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002984.html
   My bibliography  Save this article

Stability and Responsiveness in a Self-Organized Living Architecture

Author

Listed:
  • Simon Garnier
  • Tucker Murphy
  • Matthew Lutz
  • Edward Hurme
  • Simon Leblanc
  • Iain D Couzin

Abstract

Robustness and adaptability are central to the functioning of biological systems, from gene networks to animal societies. Yet the mechanisms by which living organisms achieve both stability to perturbations and sensitivity to input are poorly understood. Here, we present an integrated study of a living architecture in which army ants interconnect their bodies to span gaps. We demonstrate that these self-assembled bridges are a highly effective means of maintaining traffic flow over unpredictable terrain. The individual-level rules responsible depend only on locally-estimated traffic intensity and the number of neighbours to which ants are attached within the structure. We employ a parameterized computational model to reveal that bridges are tuned to be maximally stable in the face of regular, periodic fluctuations in traffic. However analysis of the model also suggests that interactions among ants give rise to feedback processes that result in bridges being highly responsive to sudden interruptions in traffic. Subsequent field experiments confirm this prediction and thus the dual nature of stability and flexibility in living bridges. Our study demonstrates the importance of robust and adaptive modular architecture to efficient traffic organisation and reveals general principles regarding the regulation of form in biological self-assemblies. Author Summary: While migrating, the nomadic army ant Eciton burchellii forms long trails of workers that can extend over hundreds of meters in the rain forest. To facilitate the movement of sometimes millions of individuals on uneven and unpredictable terrains, part of the ant workers link together their legs and bodies to form temporary bridges over gaps along the trails. In this work we showed that these bridges were formed readily when the flow of ants hit an unspanned gap and were dismantled very quickly after traffic has ceased on the trail. However, we also observed that the bridges were formed and remained stable under a large spectrum of the traffic intensities on the trail. Using field experiments and computer simulations we discovered the construction rules used by the ants to create these living structures that are capable of enduring variations of the traffic while remaining highly responsive to its interruption. These results offer important insights about the mechanisms that regulate biological self-assemblies and they have potential applications in swarm robotics and swarm intelligence.

Suggested Citation

  • Simon Garnier & Tucker Murphy & Matthew Lutz & Edward Hurme & Simon Leblanc & Iain D Couzin, 2013. "Stability and Responsiveness in a Self-Organized Living Architecture," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-10, March.
  • Handle: RePEc:plo:pcbi00:1002984
    DOI: 10.1371/journal.pcbi.1002984
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002984
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002984&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wright, Chris & Roberg, Penina, 1998. "The conceptual structure of traffic jams," Transport Policy, Elsevier, vol. 5(1), pages 23-35, January.
    2. Audrey Dussutour & Vincent Fourcassié & Dirk Helbing & Jean-Louis Deneubourg, 2004. "Optimal traffic organization in ants under crowded conditions," Nature, Nature, vol. 428(6978), pages 70-73, March.
    3. Burd, Martin, 2006. "Ecological consequences of traffic organisation in ant societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 124-131.
    4. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Strömbom & Audrey Dussutour, 2018. "Self-organized traffic via priority rules in leaf-cutting ants," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-13, October.
    2. Silvio Vismara, 2018. "Information Cascades among Investors in Equity Crowdfunding," Entrepreneurship Theory and Practice, , vol. 42(3), pages 467-497, May.
    3. Inyoung Chae & Andrew T. Stephen & Yakov Bart & Dai Yao, 2017. "Spillover Effects in Seeded Word-of-Mouth Marketing Campaigns," Marketing Science, INFORMS, vol. 36(1), pages 89-104, January.
    4. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    5. Vincent Labatut & Jean-Michel Balasque, 2010. "Business-oriented Analysis of a Social Network of University Students," Post-Print hal-00633643, HAL.
    6. Antoine Loeper & Jakub Steiner & Colin Stewart, 2014. "Influential Opinion Leaders," Economic Journal, Royal Economic Society, vol. 124(581), pages 1147-1167, December.
    7. Kreindler, Gabriel E. & Young, H. Peyton, 2013. "Fast convergence in evolutionary equilibrium selection," Games and Economic Behavior, Elsevier, vol. 80(C), pages 39-67.
    8. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    9. Natalia Levina & Manuel Arriaga, 2014. "Distinction and Status Production on User-Generated Content Platforms: Using Bourdieu’s Theory of Cultural Production to Understand Social Dynamics in Online Fields," Information Systems Research, INFORMS, vol. 25(3), pages 468-488, September.
    10. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    11. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Trischler, Jakob & Johnson, Mikael & Kristensson, Per, 2020. "A service ecosystem perspective on the diffusion of sustainability-oriented user innovations," Journal of Business Research, Elsevier, vol. 116(C), pages 552-560.
    13. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    14. Audrey Yue & Elmie Nekmat & Annisa R. Beta, 2019. "Digital Literacy Through Digital Citizenship: Online Civic Participation and Public Opinion Evaluation of Youth Minorities in Southeast Asia," Media and Communication, Cogitatio Press, vol. 7(2), pages 100-114.
    15. Andrea Pérez & Carlos López & María del Mar García-De los Salmones, 2017. "An empirical exploration of the link between reporting to stakeholders and corporate social responsibility reputation in the Spanish context," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 30(3), pages 668-698, March.
    16. Ahmadreza Asgharpourmasouleh & Atiye Sadeghi & Ali Yousofi, 2017. "A Grounded Agent-Based Model of Common Good Production in a Residential Complex: Applying Artificial Experiments," SAGE Open, , vol. 7(4), pages 21582440177, October.
    17. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    18. Tolga Akcura & Kemal Altinkemer & Hailiang Chen, 0. "Noninfluentials and information dissemination in the microblogging community," Information Technology and Management, Springer, vol. 0, pages 1-18.
    19. V. Kumar & Vikram Bhaskaran & Rohan Mirchandani & Milap Shah, 2013. "Practice Prize Winner ---Creating a Measurable Social Media Marketing Strategy: Increasing the Value and ROI of Intangibles and Tangibles for Hokey Pokey," Marketing Science, INFORMS, vol. 32(2), pages 194-212, March.
    20. Meyners, Jannik & Barrot, Christian & Becker, Jan U. & Bodapati, Anand V., 2017. "Reward-scrounging in customer referral programs," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 382-398.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.