IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6978d10.1038_nature02345.html
   My bibliography  Save this article

Optimal traffic organization in ants under crowded conditions

Author

Listed:
  • Audrey Dussutour

    (Université Paul Sabatier
    Université Libre de Bruxelles)

  • Vincent Fourcassié

    (Université Paul Sabatier)

  • Dirk Helbing

    (Dresden University of Technology)

  • Jean-Louis Deneubourg

    (Université Libre de Bruxelles)

Abstract

Efficient transportation, a hot topic in nonlinear science1, is essential for modern societies and the survival of biological species. Biological evolution has generated a rich variety of successful solutions2, which have inspired engineers to design optimized artificial systems3,4. Foraging ants, for example, form attractive trails that support the exploitation of initially unknown food sources in almost the minimum possible time5,6. However, can this strategy cope with bottleneck situations, when interactions cause delays that reduce the overall flow? Here, we present an experimental study of ants confronted with two alternative routes. We find that pheromone-based attraction generates one trail at low densities, whereas at a high level of crowding, another trail is established before traffic volume is affected, which guarantees that an optimal rate of food return is maintained. This bifurcation phenomenon is explained by a nonlinear modelling approach. Surprisingly, the underlying mechanism is based on inhibitory interactions. It points to capacity reserves, a limitation of the density-induced speed reduction, and a sufficient pheromone concentration for reliable trail perception. The balancing mechanism between cohesive and dispersive forces appears to be generic in natural, urban and transportation systems.

Suggested Citation

  • Audrey Dussutour & Vincent Fourcassié & Dirk Helbing & Jean-Louis Deneubourg, 2004. "Optimal traffic organization in ants under crowded conditions," Nature, Nature, vol. 428(6978), pages 70-73, March.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6978:d:10.1038_nature02345
    DOI: 10.1038/nature02345
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02345
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viana, Matheus P. & Fourcassié, Vincent & Perna, Andrea & Costa, Luciano da F. & Jost, Christian, 2013. "Accessibility in networks: A useful measure for understanding social insect nest architecture," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 38-45.
    2. Christoph Grüter & Roger Schürch & Tomer J Czaczkes & Keeley Taylor & Thomas Durance & Sam M Jones & Francis L W Ratnieks, 2012. "Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    3. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    5. Natalia Zabzina & Audrey Dussutour & Richard P Mann & David J T Sumpter & Stamatios C Nicolis, 2014. "Symmetry Restoring Bifurcation in Collective Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-11, December.
    6. Sakiyama, Tomoko & Gunji, Yukio-Pegio, 2016. "Directional ambiguity in trail-laying algorithms," Ecological Modelling, Elsevier, vol. 340(C), pages 37-44.
    7. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    8. Seitz, Michael J. & Dietrich, Felix & Köster, Gerta, 2015. "The effect of stepping on pedestrian trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 594-604.
    9. Wang, Shujie & Cao, Shuchao & Wang, Qiao & Lian, Liping & Song, Weiguo, 2016. "Effect of exit locations on ants escaping a two-exit room stressed with repellent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 239-254.
    10. Arjun Chandrasekhar & James A R Marshall & Cortnea Austin & Saket Navlakha & Deborah M Gordon, 2021. "Better tired than lost: Turtle ant trail networks favor coherence over short edges," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-24, October.
    11. Mark W. Moffett & Simon Garnier & Kathleen M. Eisenhardt & Nathan R. Furr & Massimo Warglien & Costanza Sartoris & William Ocasio & Thorbjørn Knudsen & Lars A. Bach & Joachim Offenberg, 2021. "Ant colonies: building complex organizations with minuscule brains and no leaders," Journal of Organization Design, Springer;Organizational Design Community, vol. 10(1), pages 55-74, March.
    12. Armbruster, D. & de Beer, C. & Freitag, M. & Jagalski, T. & Ringhofer, C., 2006. "Autonomous control of production networks using a pheromone approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 104-114.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6978:d:10.1038_nature02345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.