IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002607.html
   My bibliography  Save this article

A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence

Author

Listed:
  • Alireza Soltani
  • Benedetto De Martino
  • Colin Camerer

Abstract

Most utility theories of choice assume that the introduction of an irrelevant option (called the decoy) to a choice set does not change the preference between existing options. On the contrary, a wealth of behavioral data demonstrates the dependence of preference on the decoy and on the context in which the options are presented. Nevertheless, neural mechanisms underlying context-dependent preference are poorly understood. In order to shed light on these mechanisms, we design and perform a novel experiment to measure within-subject decoy effects. We find within-subject decoy effects similar to what have been shown previously with between-subject designs. More importantly, we find that not only are the decoy effects correlated, pointing to similar underlying mechanisms, but also these effects increase with the distance of the decoy from the original options. To explain these observations, we construct a plausible neuronal model that can account for decoy effects based on the trial-by-trial adjustment of neural representations to the set of available options. This adjustment mechanism, which we call range normalization, occurs when the nervous system is required to represent different stimuli distinguishably, while being limited to using bounded neural activity. The proposed model captures our experimental observations and makes new predictions about the influence of the choice set size on the decoy effects, which are in contrast to previous models of context-dependent choice preference. Critically, unlike previous psychological models, the computational resource required by our range-normalization model does not increase exponentially as the set size increases. Our results show that context-dependent choice behavior, which is commonly perceived as an irrational response to the presence of irrelevant options, could be a natural consequence of the biophysical limits of neural representation in the brain. Author Summary: While faced with a decision between two options for which you have no clear preference (say, a small cheap TV and a large expensive TV), you are presented with a new but inferior option (say, a medium expensive TV). The mere presence of the new option, which you would not select anyway, shifts your preference toward the expensive large TV. This simple example shows how the introduction of an irrelevant option, called the “decoy,” to the choice set can change preference between existing options, a phenomenon often called the context-dependent preference reversal. A number of models have been proposed to explain context effects. Despite their success, they are either uninformative about the underlying neural mechanisms or they require comparison of every possible pair of option attributes, a computation that is unlikely to be implemented by the nervous system due to its high computational demand and undesirable outcomes when the choice set size increases. Here we present a novel account of the context-dependent preference based on the adjustment of neural response to the set of available options. Moreover, we show results from a novel behavioral task designed to test contrasting predictions of our model and a classic model of context effects.

Suggested Citation

  • Alireza Soltani & Benedetto De Martino & Colin Camerer, 2012. "A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:1002607
    DOI: 10.1371/journal.pcbi.1002607
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002607
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002607&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.