IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v26y2018i1p128-145.html
   My bibliography  Save this article

Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models

Author

Listed:
  • Tamara Ayœs, Armando Lenin

    () (Departamento de Finanzas, Escuela de Econom’a y Finanzas, Universidad EAFIT (Colombia))

  • Villegas, Gladis Cecilia

    () (Facultad de Ciencias Econ—micas y Administrativas, Universidad de Medell’n (Colombia))

  • Leones Castro, María Cristina

    () (Departamento de Finanzas, Escuela de Econom’a y Finanzas, Universidad EAFIT (Colombia))

  • Salazar Bocanegra, Juan Antonio

    () (Departamento de Finanzas, Escuela de Econom’a y Finanzas, Universidad EAFIT (Colombia))

Abstract

Este artículo muestra la predicci—n del nivel de insolvencia en empresas que no cotizan en bolsa y pertenecen al sector salud con uno y dos a–os de anticipaci—n, utilizando el an‡lisis de regresión log’stica mœltiple basado en indicadores de liquidez, endeudamiento, estructura financiera y rentabilidad. Se toma como referencia el per’odo 2010-2013 para una muestra de 3.930 empresas categorizadas por tama–o (grande, mediana, peque–a y micro) y clasific‡ndolas por su nivel de riesgo de insolvencia (alto, medio y bajo). Los resultados de acierto de los modelos se encuentran entre un 70% y 80% para cada uno de los años, validando los resultados obtenidos a lo largo del estudio. || This article shows the prediction of the level of insolvency in companies that are not listed on the stock exchange belonging to the health sector for one and two years in advance, using the multiple logistic regression analysis based on indicators of liquidity, indebtedness, financial structure and profitability. The period 2010-2013 is taken as a reference for a sample of 3,930 companies categorized by size (large, medium, small and micro) and classified by their level of high, medium and low insolvency risk. The success results of the models are between 70% and 80% for each of the years, validating the results obtained throughout the study.

Suggested Citation

  • Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.
  • Handle: RePEc:pab:rmcpee:v:26:y:2018:i:1:p:128-145
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2757
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2757/3039
    Download Restriction: no

    References listed on IDEAS

    as
    1. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    2. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    6. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    7. Turetsky, Howard F & McEwen, Ruth Ann, 2001. "An Empirical Investigation of Firm Longevity: A Model of the Ex Ante Predictors of Financial Distress," Review of Quantitative Finance and Accounting, Springer, vol. 16(4), pages 323-343, June.
    8. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    9. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    10. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    11. Lincoln, Mervyn, 1984. "An empirical study of the usefulness of accounting ratios to describe levels of insolvency risk," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 321-340, June.
    12. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    13. Collins, Robert A. & Green, Richard D., 1982. "Statistical methods for bankruptcy forecasting," Journal of Economics and Business, Elsevier, vol. 34(4), pages 349-354.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    insolvencia; modelos logit; indicadores financieros; insolvency; logit models; financial indicators;

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • M40 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:26:y:2018:i:1:p:128-145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publicación Digital - UPO). General contact details of provider: http://edirc.repec.org/data/dmupoes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.